ارزیابی مدل های رگرسیون کلی و رگرسیون موزون جغرافیایی در مدلسازی مکانی رطوبت خاک، مطالعه موردی: استان فارس

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه آموزشی آب و هواشناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

مدل‌سازی‌های مکانی از روش‌های درک و پیش‌بینی متغیرهای محیطی است. رطوبت سطحی خاک، متغیّر کلیدی برای توصیف خشک‌سالی، تبادلات آب و انرژی بین زمین و هوا کره است. رطوبت خاک علاوه بر اینکه از متغیرهای محیطی تأثیر می‌پذیرد بر بسیاری از پدیده‌های محیطی ازجمله رواناب، فرسایش خاک و تولید محصولات تأثیر می‌گذارد اما به دلیل ثابت نبودن شرایط مکانی و زمانی پارامترهای محیطی به‌شدت تغییرپذیر است. هدف از این مقاله ارزیابی مدل‌های رگرسیون کلی و رگرسیون موزون جغرافیایی در مدل‌سازی مکانی رطوبت خاک استان فارس است. در این راستا پراکندگی رطوبت خاک به‌عنوان متغیر وابسته و لایه‌های بارش، آب معادل برف، شاخص پوشش گیاهی و شاخص رطوبت توپوگرافی و به‌عنوان متغیرهای مستقل انتخاب گردید و سپس با استفاده از مدل رگرسیون کلی (OLS) و رگرسیون موزون جغرافیایی (GWR) به مدل‌سازی مکانی اقدام شد. بر اساس معیارهای ارزیابی، نتایج نشان داد مدل GWR با71/0 R2=قدرت تبیین و برآورد بهتری نسبت به مدل رگرسیون کلی با 66/0 R2=دارد. بر اساس نتایج، عوامل مکانی بارش و رطوبت توپوگرافی بیش‌ترین اثر مثبت و تبخیر و تعرق اثر منفی بر رطوبت خاک در محدوده موردمطالعه را دارند. مدل‌سازی‌های مکانی از روش‌های درک و پیش‌بینی متغیرهای محیطی است. رطوبت سطحی خاک، متغیّر کلیدی برای توصیف خشک‌سالی، تبادلات آب و انرژی بین زمین و هوا کره است. رطوبت خاک علاوه بر اینکه از متغیرهای محیطی تأثیر می‌پذیرد بر بسیاری از پدیده‌های محیطی ازجمله رواناب، فرسایش خاک و تولید محصولات تأثیر می‌گذارد اما به دلیل ثابت نبودن شرایط مکانی و زمانی پارامترهای محیطی به‌شدت تغییرپذیر است.

کلیدواژه‌ها


  1. Amani, M., S. Parsian, S. MirMazloumi and O. Aieneh. 2016. Two new soil moisture indices based on the NIR-red triangle space of Landsat-8 data. International journal of applied earth observation and geoinformation. 73: 176-186(in Persian).
  2. Asakereh, H. 2004. Spatial change modeling of climatic data a case study: annual precipitation of esfahan province. Geographical research. 19(74): 213_ 232 (in Persian).
  3. Asakereh H. and R. razmi. 2018. Spatial modeling of summer precipitation in North-west of Iran. Researches in Geographical Sciences, 18 (50):155-178 (in Persian).
  4. Asakereh, H. 2011. Fundamentals of Statistical Climatology. Zanjan University Press. 545
  5. Asakereh, H. and Z. SeifiPour. 2013. Spatial Modeling of Annual Precipitation in Iran. Geography and Development Iranian Journal.10 (29): 15-30 (in Persian).
  6. Babaeian, E., M. Homaee and A. Norouzi. 2013. Estimation of surface soil moisture using ENVISAT ASAR radar images. Water Research in Agriculture.27 (4):622-611 (in Persian).
  7. Brown, S., L.Versace.V. Laurenson. D. Ierodiaconou. J. Fawcett and S. Salzman. 2012. Assessment of spatiotemporal varying relationships between rainfall, land cover and surface water area using geographically weighted regression. Environmental Modeling and Assessment.17 (3): 241-254.
  8. Erfanian, m. Alijanpour, A. and M. Hosseink. 2013. An Introduction to Multiple Regression Methods (GWR and OLS) for Modeling the Land Use Effects on Water Quality. Extension and Development of watershed management, 1:18-29 (in Persian).
  9. Falloon, P., D. Bebber. J. Bryant. M. Bushell. A. Challinor. J. Dessai and A. K. Koehler. 2015. Using climate information to support crop breeding decisions and adaptation in agriculture. World Agriculture. 5(1): 25-43.
  10. Gao, L., M. Shao. X. Peng and D. Shey. 2015. Spatio-temporal variability and temporal stability of water contents distributed within soil profiles at a hillslope scale. Catena. 132: 29-36.
  11. Kerlinger, p. 2005. Multiple regressions in behavioral research. Translated by hassan sarai. Samt Press. 534 pages.
  12. Khanmohammadi, F., M. Homaee and A. 2015. Soil moisture estimating with NDVI and land surface temperature and normalized moisture index using MODIS images. Journal of Soil and Water Resources Conservation. 4: 37-45 (in Persian).
  13. Koohbanani, H. and R.,2019. Mapping the Moisture of Surface Soil Using Landsat 8 Imagery (Case Study: Suburb of Semnan City). Geography and Sustainability of Environment, 8 (3): 65-77 (in Persian).
  14. Lai, X., Q. Zhu. Z. Zhou and K. Liao. 2017. Influences of sampling size and pattern on the uncertainty of correlation estimation between soil water content and its influencing factors. Journal of hydrology. 555: 41-50.
  15. Lee, Y., C. Jung and S. Kim. 2019. Spatial distribution of soil moisture estimates using a multiple linear regression model and Korean geostationary satellite (COMS) data. Agricultural water management, 213:580-593.
  16. Lu, B., P. Harris. M. Charlton and C. Brunsdon. 2015. Calibrating a geographically weighted regression model with parameter-specific distance metrics. Procedia Environmental Sciences. 26:109-114.
  17. Luca, C., B. Si and R. Farrell. 2007. Upslope length improves spatial estimation of soil organic carbon content. Canadian journal of soil science. 87(3): 291-300.
  18. Mekonnen, F. 2009. Satellite remote sensing for soil moisture estimation: Gumara catchment. Ethiopia Satellite remote sensing for soil moisture estimation: Gumara catchment. Ethiopia. Thesis of Geo-information Science and Earth Observation, Specialisation: (Integrated Watershed Modelling and Management). WREM Department of ITC. Enschede, the Netherlands. 127
  19. Saghafian, B. A. Shokoohi and T. Raziei. 2003. Drought spatial analysis and development of severity-duration-frequency curves for an arid region. International Association of Hydrological Sciences, Publication, 278: 305-311.
  20. Sharma, V., A. Irmak. I. Kabengeand S. Irmak. 2011. Application of GIS and geographically weighted regression to evaluate the spatial non-stationarity relationships between precipitations vs. irrigated and rainfed maize and soybean yields. Transactions of the ASABE. 54(3): 953-972.
  21. Tabatabaeenejad, A., M. Burgin. X. Duan and M. Moghaddam. 2014. P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: First AirMOSS results. IEEE Transactions on Geoscience and Remote Sensing. 53(2): 645-658.
  22. Tu, L. 2019. Downscaling SMAP Soil Moisture Data Using MODIS Data. Department of Geography and Anthropology. Master of Science (MS). 219pages.
  23. Usman, U., L. Aliyu and M. K. Aminu. 2015. Study of the Geographically Weighted Regression Application on Climate Data. Mathematical Theory and Modeling. 5:8-21.
  24. Van Loon, F., K.Stahl. G. Baldassarre. J. Clark .S. Rangecroft. N. Wanders and R. Uijlenhoet. 2016. Drought in a human-modified world: reframing drought definitions understanding and analysis approaches. Earth Syst. 20(9): 3631–3650.
  25. Vereecken, H., A. Huisman. Y. Pachepsky. C. Montzka. J. Van Der Kruk. H. Bogena and J. Vanderborght. 2014. on the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology. 516: 76-96.
  26. Wang, Q., J. Ni and J. Tenhunen. 2005. Application of geographically‐weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Global ecology and biogeography. 14(4): 379-393.
  27. Xu, G., T. Zhang. Z. Li. P. Cheng and S. Cheng. 2017. Temporal and spatial characteristics of soil water content in diverse soil layers on land terraces of the Loess Plateau. China. Catena. 158: 20-29.
  28. Yagci, L., L.Di and M. Deng. 2013. The effect of land-cover change on vegetation greenness-based satellite agricultural drought indicators: a case study in the southwest climate division of Indiana. USA. International journal of remote sensing. 34(20): 6947-6968.
  29. Yoshioka, M., S.Takakura. T. Ishizawa and N. Sakai. 2015. Temporal changes of soil temperature with soil water content in an embankment slope during controlled artificial rainfall experiments. Journal of Applied Geophysics. 114: 134-145.