تعیین مؤلفه‌های اثرگذار بر کاربست رویکردهای طبیعت محور در مدیریت رواناب در معابر محلی تهران به کمک تحلیل اثر متقابل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه معماری، دانشکده معماری، دانشکدگان هنرهای زیبا، دانشگاه تهران، تهران، ایران.

2 گروه مهندسی طراحی محیط زیست، دانشکده محیط زیست، دانشگاه تهران، تهران، ایران.

چکیده

رویکرد فعلی مدیریت رواناب در شهر تهران، رویکردی سازه‌محور است که هدف اصلی آن جمعآوری و انتقال رواناب به خارج از شهر است. این در حالی است که رویکردهای طبیعتمحور بر جذب حداکثری آب در محل تأکید دارند و جهت محقق ساختن این هدف از نگاه بین‌رشته‌ای بهره میبرند. این پژوهش جهت فراهم کردن زمینه کاربست رویکردهای طبیعتمحور در معابر محلی تهران دو هدف اصلی را دنبال می‌کند: 1) بازشناسی تخصص‌ها و ‌مؤلفه‌‌های اصلی مرتبط با موضوع؛ 2) تعیین نقش و نوع اثرگذاری هر مؤلفه در شرایط فعلی. در گام اول، واکاوی رویکردهای طبیعتمحور به ارائه مدل نظری تخصصها و مؤلفههای تحت پوشش آن‌ها انجامید. در گام دوم اثرات متقابل مؤلفه‌ها از نقطه‌نظر متخصصان با نرم افزار میک‌مک تحلیل گردید. نتایج نشان میدهد که در شرایط فعلی "سرعت و نرخ جریان" به عنوان مؤلفه تأثیرگذار مهم‌ترین نقش و مؤلفه‌های "پروفیل معبر"، "همجواری‌های معبر"، "فعالیتها" و "پوشش گیاهی" و نیز "توجیه اقتصادی"، نقشی تعیین‌کننده در مدیریت رواناب در معابر محلی تهران دارند؛ سایر مؤلفه‌ها یا تأثیرپذیر هستند یا در شرایط موجود از اولویت بالایی برخوردار نیستند. نتایج پژوهش بر کار بیندانشی بین تخصص‌های علوم آب و منظر شهری و همچنین اقتصاد جهت فراهم آوردن زمینه کاربست این رویکردها تأکید ویژه می‌نماید.

کلیدواژه‌ها


  1. Arcade, J., Godet, M., Meunier, F., & Roubelat, F. (2003). Structural Analysis with the MICMAC Method & Actors Strategy with MACTOR Method, AC/UNU Millennium Project: Futures Research Methodology, V2.0, AC/UNU, Washington, DC.
  2. Connecticut Stormwater Quality Manual (2004). The Connecticut Department of Environmental Protection.
  3. Connecticut Stormwater Quality Manual (2004). The Connecticut Department of Environmental Protection.
  4. Dietz, M. E. (2007). Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions, Water, ir, and Soil Pollution, Issue 186.
  5. Evaluating Options for Water Sensitive Urban Design: A National Guide (2012). Lynbrook Estate (Melbourne, Victoria), in: Appendix A: WSUD Case Studies, Australia: BMT-WBM
  6. Evaluating Options for Water Sensitive Urban Design: A National Guide (2012). Lynbrook Estate (Melbourne, Victoria), in: Appendix A: WSUD Case Studies, Australia: BMT-WBM
  7. Firehock, K. (2010). A Short History of the Term Green Infrastructure and Selected Literature.
  8. Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J., Mikkelsen, P. S., Rivard, G., Uhl, M., Dagenais, D., & Viklander, M. (2014). SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage, Urban Water Journal, 12(7), 525-542, DOI: 10.1080/1573062X.2014.916314
  9. Ghofrani, Z., Sposito, V., & Faggian, R. (2017). A comprehensive review of blue-green infrastructure concepts. International Journal of Environment and Sustainability, 6(1)., 15-36.
  10. Green Infrastructure Guidance (2009). UK: Natural England Publications.
  11. Green Infrastructure Guidance (2009). UK: Natural England Publications.
  12. Hajiani, A. (2017). Principles and Methods of Futures Research. Imam Sadiq University Press, Tehran.
  13. Hoss, F., Fischbach, J., & Molina-Perez, E. (2016). Effectiveness of Best Management Practices for Stormwater Treatment as a Function of Runoff Volume, Journal of Water Resources Planning and Management, 142(11), 05016009-1-12, DOI: 10.1061/(ASCE)WR.1943-5452.0000684
  14. Lawshe, C. H. (1975). A quantitative approach to content validity, Personnel psychology, 28, 563–575.
  15. Lloyd, D. (2001). Water Sensitive Urban Design in the Australian Context, Synthesis of the Conference: Water Sensitive Urban Design - Sustainable Drainage Systems for Urban Areas, 30 - 31 August 2000, Melbourne, Australia.
  16. Low Impact Development Approaches Handbook (2021). USA: Clean Water Service.
  17. Low Impact Development Approaches Handbook (2021). USA: Clean Water Service.
  18. Low Impact Development Stormwater Management Planning and Design Guide (2010). Conservation Toronto Region for the Living City, Version 1.0.
  19. Low Impact Development Stormwater Management Planning and Design Guide (2010). Conservation Toronto Region for the Living City, Version 1.0.
  20. Melbourne Water (2013). Water Sensitive Urban Design Guidelines South Eastern Councils: Melbourne Water & State Government Victoria.
  21. Melbourne Water (2013). Water Sensitive Urban Design Guidelines South Eastern Councils: Melbourne Water & State Government Victoria.
  22. Mississippi Department of Environmental Quality (2011). Handbook for Erosion Control, Sediment Control and Storm water Management on Construction Sites and Urban Areas, Vol.2, Mississippi, USA.
  23. Mississippi Department of Environmental Quality (2011). Handbook for Erosion Control, Sediment Control and Storm water Management on Construction Sites and Urban Areas, Vol.2, Mississippi, USA.
  24. Mitchell, V., Deletic, A., Fletcher, T. D., Hatt, B. E., & McCarthy, D. T. (2007). Achieving multiple benefits from stormwater harvesting. Water science and technology, 55(4), 135-144.
  25. Molaei, M., Talebian. H. (2016). Future research of Iranian issues with the method of structural analysis, Parliament and Strategy Journal, 23 (86), 5-32.
  26. National Water Agency (2013). Managing Urban Runoff: Drainage Handbook, Singapore National Water Agency, Singapore.
  27. National Water Agency (2013). Managing Urban Runoff: Drainage Handbook, Singapore National Water Agency, Singapore.
  28. National Water Agency (2014). ABC Waters Design Guidelines and Engineering Procedures: 3rd edition, Singapore’s national water agency, Singapore.
  29. National Water Agency (2014). ABC Waters Design Guidelines and Engineering Procedures: 3rd edition, Singapore’s national water agency, Singapore.
  30. National Water Agency (2018). Code of Practice on Surface Water Drainage (COP): 7th edition, Singapore’s national water agency, Singapore.
  31. National Water Agency (2018). Code of Practice on Surface Water Drainage (COP): 7th edition, Singapore’s national water agency, Singapore.
  32. Pennsylvania Stormwater BMP Manual (2006). Department of Environmental Protection Bureau of Watershed Management December 30, 2006.
  33. Pennsylvania Stormwater BMP Manual (2006). Department of Environmental Protection Bureau of Watershed Management December 30, 2006.
  34. Philadelphia Stormwater Management Guidance Manual (2014). Prepared by: Planning & Research Philadelphia Water Department, Version 2.1, Revised: February 10, 2014.
  35. Philadelphia Stormwater Management Guidance Manual (2014). Prepared by: Planning & Research Philadelphia Water Department, Version 2.1, Revised: February 10, 2014.
  36. Rabbani, T. (2012). Structural analysis method as a tool for recognizing and analyzing variables affecting the future of urban issues, Frist National Conference of Future Research, Yadegar Derakhshan Aria, Tehran. Iran.
  37. Razmjooi, N., Magdavi, M., Afkhami, H., Mohseni Saravi, M., Moetamed Vaziri, B. (2018). Flood Control and Water Supply for Irrigation of Green Spaces Using Urban Runoff Harvesting Management Design (Case Study: Region 22 of Tehran). Journal of Environmental Science and Technology, 20(4), 95-109.
  38. Sacramento Region (2018). Storm Water Quality Design Manual: Integrated Design Solutions for Urban Development, Sacramento Region, California, USA.
  39. Sacramento Region (2018). Storm Water Quality Design Manual: Integrated Design Solutions for Urban Development, Sacramento Region, California, USA.
  40. Santiago Fink, H. (2016). Human-nature for climate action: Nature-based solutions for urban sustainability. Sustainability, 8(3), 254, 1-21.
  41. Seddon, N., Chausson, A., Berry, P., Girardin, C. A., Smith, A., & Turner, B. (2020). Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philosophical Transactions of the Royal Society B, 375(1794), 20190120, 1-12.
  42. Shun Chan, F.K., Griffiths J.A, Higgitte, D., Xu, S., Zhu F., Tang, Y., Xu, Y., & Thorne, C. (2018). “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context, Land Use Policy, 76(C), 772-778.
  43. Shuster, WD., Heberling, MT., & Thurston, HW. (2008). A Multidisciplinary Approach to Sustainable Management of Watershed Resources, Unitd States Environental Protection Agency.
  44. Storm water Management Manual for Western Australia (2007). Government of Western Australia, Department of Water.
  45. Storm water Management Manual for Western Australia (2007). Government of Western Australia, Department of Water.
  46. Tehran Surface Water Management Master Plan. (2011). Volume 8: The Modern Technology Approach (LID / BMP), Tehran Technical and Engineering Consulting Organization and Tehran Municipality Technical and Civil Deputy.
  47. Vasilevska, M. & Vasilevska, L. (2018, April 20). Modern Stormwater Management Approaches in Urban Regeneration, 6th International Conference Contemporary achievements in civil engineering, Subotica: Serbia, 525-534.
  48. Yavari, A., Yazdan Panah, M., Zebardast, L. Alemohammad, S. (2015). Urban Green Infrastructure Assessment for Their Regeneration in Tehran Landscape, Journal of Environmental Studies, 41 (35), 613-625.
  49. Zahmatkesh, Z., Burian, J., Karamouz, M., Tavakol-Davani, H., & Goharian, E. (2015) Low-Impact Development Practices to Mitigate Climate Change Effects on Urban Stormwater Runoff: Case Study of New York City, Journal of Irrigation and Drainage Engineering, 141(1), 04014043-04014043.