بینام، (1398). سازمان هواشناسی ایران، www.irimo.ir.
ندافی، ک؛ رضایی، س، نبی زاده، ر، یونسیان، م، جباری، ح. (1387). بررسی دانسیته باکتری های هوابرد در هوای داخل بیمارستان مرکز طبی کودکان تهران. مجله سلامت و محیط، فصلنامه ی علمی و پژوهشی انجمن علمیی بهداشت محیط ایران، دوره 1(2) زمستان 1387، صص 75-80
Anonymous, (2008). Ladsweb.modaps.eosdis.nass.gov/search.
Anonymous, (2020). www.ready.noaa.gov.
Cheng, H.R. & Jiang, N. (2005). Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnology letters, 28(1), pp.55-59.
Environmental Protection Agency. (1998). SLAMS/ NAMS/ PAMS network review guidance. Office of Air Quality Planning and standards Research. Report No: 454/R-98-003.
Ghosh, J. (2005). Bioaerosols generated from biosolids applied farm fields in Wood County, Ohio (Doctoral dissertation, Bowling Green State University).
Griffin, D. W., Garrison, V. H., Herman, J. R., & Shinn, E. A. (2001). African desert dust in the Caribbean atmosphere: microbiology and public health. Aerobiologia, 17(3), 203-213.
Griffin, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical microbiology reviews, 20(3), 459-477.
Ghermandi, A., Van den Bergh, J. C., Brander, L. M., De Groot, H. L., & Nunes, P. A. (2008). The economic value of wetland conservation and creation: A meta-analysis. https://dx.doi.org/10.2139/ssrn.1273002.
Hara, K., & Zhang, D. (2012). Bacterial abundance and viability in long-range transported dust. Atmospheric Environment, 47, 20-25.
Keramat, A., Marivani, B., & Samsami, M. (2011). Climatic change, drought and dust crisis in Iran. International Journal of Geological and Environmental Engineering, 5(9), 472-475.
Lu, R., Li, Y., Li, W., Xie, Z., Fan, C., Liu, P., & Deng, S. (2018). Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi'an, China. Science of the Total Environment, 637, 244-252.
Mei, D., Xiushan, L., Lin, S., & Ping, W. A. N. G. (2008). A dust-storm process dynamic monitoring with multi-temporal MODIS data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 965-970.
Mirhoseini, S. H., Nikaeen, M., Satoh, K., & Makimur, K. (2016). Assessment of airborne particles in indoor environments: Applicability of particle counting for prediction of bioaerosol concentrations. Aerosol and Air Quality Research, 16(8), 1903-1910.
Maki, T., Puspitasari, F., Hara, K., Yamada, M., Kobayashi, F., Hasegawa, H., & Iwasaka, Y. (2014). Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event. Science of the total environment, 488, 75-84.
Maki, T., Furumoto, S., Asahi, Y., Lee, K. C., Watanabe, K., Aoki, K., & Iwasaka, Y. (2018). Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities. Atmospheric Chemistry and Physics, 18(11), 8155-8171.
Mu, F., Li, Y., Lu, R., Qi, Y., Xie, W., & Bai, W. (2020). Source identification of airborne bacteria in the mountainous area and the urban areas. Atmospheric Research, 231, 104676.
Park, J., Li, P. F., Ichijo, T., Nasu, M., & Yamaguchi, N. (2018). Effects of Asian dust events on atmospheric bacterial communities at different distances downwind of the source region. Journal of Environmental Sciences, 72, 133-139.
Pargar, F., Biet Saeed, K., Ebadi, A., Ghobadian, S., & Adineh, M. (2018). Assessment of the preparedness of all ahwaz medical centers in the face of the crisis in 2017. Indo American Journal of Pharmaceutical Sciences, 5(1), 161-168
Rosenfeld, D., Rudich, Y., & Lahav, R. (2001). Desert dust suppressing precipitation: A possible desertification feedback loop. Proceedings of the National Academy of Sciences, 98(11), 5975-5980.
Sassen, K., DeMott, P. J., Prospero, J. M., & Poellot, M. R. (2003). Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL‐FACE results. Geophysical Research Letters, 30(12).
Shao, Y., Wyrwoll, K. H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H., & Yoon, S. (2011). Dust cycle: An emerging core theme in Earth system science. Aeolian Research, 2(4), 181-204.
Shahsavani, A., Naddafi, K., Haghighifard, N. J., Mesdaghinia, A., Yunesian, M., Nabizadeh, R., & Goudarzi, G. (2012). The evaluation of PM10, PM2.5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from april through september 2010. Journal of arid environments, 77, 72-83.
Soleimani, Z., Goudarzi, G., Naddafi, K., Sadeghinejad, B., Latifi, S. M., Parhizgari, N., & Shahsavani, A. (2013). Determination of culturable indoor airborne fungi during normal and dust event days in Ahvaz, Iran. Aerobiologia, 29(2), 279-290.
Soleimani, Z., Goudarzi, G., Sorooshian, A., Marzouni, M. B., & Maleki, H. (2016). Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol. Atmospheric environment, 138, 135-143.
Sissakian, V., Al-Ansari, N., & Knutsson, S. (2013). Sand and dust storm events in Iraq. Journal of Natural Science, 5(10), 1084-1094.
Serrano-Silva, N., & Calderon-Ezquerro, M. C. (2018). Metagenomic survey of bacterial diversity in the atmosphere of Mexico City using different sampling methods. Environmental Pollution, 235, 20-29.
Schepanski, K. (2018). Transport of mineral dust and its impact on climate. Geosciences, 8(5), 151.
Tolabi, Z., Alimohammadi, M., Hassanvand, M. S., Nabizadeh, R., Soleimani, H., & Zarei, A. (2019). The investigation of type and concentration of bio-aerosols in the air of surgical rooms: A case study in Shariati hospital, Karaj. MethodsX, 6, 641-650.
WHO. (2008). Air quality guidelines for Europe. World Health Organization Regional Office for Europe.
Li, Y., Huang, G. H., Veawab, A., Nie, X., & Liu, L. (2006). Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management. Journal of the Air & Waste Management Association, 56(8), 1070-1082.
Yoo, K., Han, I., Ko, K. S., Lee, T. K., Yoo, H., Khan, M. I., & Park, J. (2019). Bacillus-dominant airborne bacterial communities identified during Asian dust events. Microbial ecology, 78(3), 677-687.
Yue, H., He, C., Zhao, Y., Ma, Q., & Zhang, Q. (2017). The brightness temperature adjusted dust index: An improved approach to detect dust storms using MODIS imagery. International journal of applied earth observation and geo information, 57, 166-176.
Zhang, S., Li, G., Tian, L., Guo, Q., & Pan, X. (2016). Short-term exposure to air pollution and morbidity of COPD and asthma in East Asian area: A systematic review and meta-analysis. Environmental research, 148, 15-23.
Zhang, Y., Wu, D., Kong, Q., Li, A., Li, Y., Geng, S., & Chen, P. (2020). Exposure level and distribution of airborne bacteria and fungi in an urban utility tunnel: A case study. Tunnelling and Underground Space Technology, 96, 103215.
Zhou, H., Wang, X., Li, Z., Kuang, Y., Mao, D., & Luo, Y. (2018). Occurrence and distribution of urban dust-associated bacterial antibiotic resistance in Northern China. Environmental Science & Technology Letters, 5(2), 50-55.
Zhai, Y., Li, X., Wang, T., Wang, B., Li, C., & Zeng, G. (2018). A review on airborne microorganisms in particulate matters: composition, characteristics and influence factors. Environment international, 113, 74-90.