تعیین و اولویت بندی معیارهای موثر در تاب آوری انرژی در محیط شهری با استفاده از فرآیند تحلیل سلسله مراتبی فازی (FAHP)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مدیریت محیط زیست، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد دانشکده مکانیک، دانشگاه صنعتی شریف، تهران، ایران

3 عضو هیئت مدیره مؤسسه تحقیقات خاک و آب، کرج، ایران

4 استادیاردانشکده تحصیلات تکمیلی علوم انسانی و اجتماعی، دانشکده تحصیلات تکمیلی علوم پیشرفته و مهندسی، دانشگاه هیروشیما، ژاپن

چکیده

امروزه حدود 60% جمعیت جهان در شهرها سکونت دارند. شهرها مصرف کننده های عمده انرژی بوده و لذا ایجاد تاب آوری شهری در حوزه انرژی امری ضروری است.
تاب آوری انرژی در محیط شهری را می توان به دو دسته کوتاه مدت نظیر توان مقابله با پدیده هایی همچون زلزله و سیل ، و بلند مدت در جهت مقابله با تأثیرات منفی ناشی از پدیده اقلیم تقسیم نمود.
در این مقاله با استفاده از منابع علمی، نظر سنجی از خبرگان، و روش تحلیل عاملی فازی، معیارهای اصلی به چهار دسته فنی و زیر ساختی، محیطی انسان ساخت، حکمرانی، و اجتماعی -فرهنگی تقسیم و زیر معیارهای هریک در هر دو رویکرد اولویت بندی گردیدند. در رویکرد کوتاه مدت، عوامل مؤثر در تاب آوری انرژی به ترتیب شامل ذخیره سازی انرژی، الگوی توسعۀ شهری ، برنامه ریزی آموزش و فرهنگ سازی و در بلند مدت شامل افزایش راندمان انرژی ، کاهش مصرف انرژی در ساختمان، قانون گذاری و آگاهی عمومی می باشند.
همچنین با مقایسه اولویت ها در هر بخش، عوامل مشترک تأثیرگذار در هر دو دیدگاه ارائه گردیدند که می توانند ابزار مناسبی را جهت مدیریت برای برنامه ریزی به منظور توسعۀ جوامع کم کربن و تاب آور فراهم آورند.

کلیدواژه‌ها


رضایی، م ; رفیعیان، م (1394)، سنجش و ارزیابی میزان ‌تاب‌آوری کالبدی اجتماع‌های شهری در برابر زلزله ،مطالعۀ موردی: محله‌های شهر تهران، پژوهش‌های جغرافیای انسانی, 47 دوره 47، شماره 4، ص 626-623.
صالحی، ا; آقابابایی، م; سرمدی، ه ; بهتاش، م (1390)، بررسی میزان ‌تاب‌آوری محیطی با استفاده از مدل شبکه علیت، مجله محیط شناسی، سال سی و هشتم، شماره 59، ص 112-99.
Abhas K., T. W. M. and Z. S.-G. eds. (2013). Building urban resilience: principles, tools, and practice. World Bank Publications, 2013.
Béné, C., Mehta, L., McGranahan, G., Cannon, T., Gupte, J., & Tanner, T. (2018). Resilience as a policy narrative: potentials and limits in the context of urban planning. Climate and Development, 10(2).
Bostan, I., Gheorghe, A. V, Dulgheru, V., Sobor, I., Bostan, V., & Sochirean, A. (2012). Resilient energy systems: renewables: wind, solar, hydro (Vol. 19). Springer Science & Business Media.
Byrd, H., & Matthewman, S. (2014). Exergy and the city: the technology and sociology of power (failure). Journal of Urban Technology, 21(3), 85–102.
Byrd, H., & Matthewman, S. (2014). Exergy and the City: The Technology and Sociology of Power (Failure). Journal of Urban Technology, 21(3). Perrone, D., & Hornberger, G. M. (2014). Water, food, and energy security: scrambling for resources or solutions? Wiley Interdisciplinary Reviews: Water, 1(1).
Caputo, S., Caserio, M., Coles, R., Jankovic, L., & Gaterell, M. R. (2012). Testing energy efficiency in urban regeneration. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 165(1), 69–80
Carréon, J. R., & Worrell, E. (2018). Urban energy systems within the transition to sustainable development. A research agenda for urban metabolism. Resources, Conservation and Recycling, 132, 258–266.
Clancy, J. S. (2011). Energy affordability and household energy security: discussion note.
Coaffee, J. (2008). Risk, resilience, and environmentally sustainable cities. Energy Policy, 36(12), 4633–4638.
Elmqvist, T., Andersson, E., Frantzeskaki, N., McPhearson, T., Olsson, P., Gaffney, O., Takeuchi, K., & Folke, C. (2019). Sustainability and resilience for transformation in the urban century. Nature Sustainability, 2(4), 267–273.
Engle, N. L., de Bremond, A., Malone, E. L., & Moss, R. H. (2014). Towards a resilience indicator framework for making climate-change adaptation decisions. Mitigation and Adaptation Strategies for Global Change, 19(8), 1295–1312.
Esteban, M., & Portugal-Pereira, J. (2014). Post-disaster resilience of a 100% renewable energy system in Japan. Energy, 68, 756–764.
Gasser, P., Suter, J., Cinelli, M., Spada, M., Burgherr, P., Hirschberg, S., Kadziński, M., & Stojadinović, B. (2020). Comprehensive resilience assessment of electricity supply security for 140 countries. Ecological Indicators, 110.
Gatto, A., & Drago, C. (2020). Measuring and modeling energy resilience. Ecological Economics, 172.
Godschalk, D. R. (2003). Urban hazard mitigation: creating resilient cities. Natural Hazards Review, 4(3), 136–143.
Hussey, K., & Pittock, J. (2012). The energy-water nexus: Managing the links between energy and water for a sustainable future. In Ecology and Society (Vol. 17, Issue 1).
Jabareen, Y. (2012). Towards a sustainability education framework: Challenges, concepts and strategies-the contribution from urban planning perspectives. Sustainability, 4(9), 2247–2269.
Jesse, B. J., Heinrichs, H. U., & Kuckshinrichs, W. (2019). Adapting the theory of resilience to energy systems: A review and outlook. In Energy, Sustainability and Society (Vol. 9, Issue 1). BioMed Central Ltd.
Kennedy, C., & Corfee-Morlot, J. (2013). Past performance and future needs for low carbon climate resilient infrastructure- An investment perspective. Energy Policy, 59, 773–783.
Kruyt, B., van Vuuren, D. P., de Vries, H. J. M., & Groenenberg, H. (2009). Indicators for energy security. Energy Policy, 37(6), 2166–2181.
Lin, Y., & Bie, Z. (2016). Study on the Resilience of the Integrated Energy System. Energy Procedia, 103, 171–176.
Lloyd-Jones, T. (2010). Retrofitting sustainability to historic city core areas. Proceedings of the Institution of Civil Engineers - Municipal Engineer, 163(3).
Mahad, N. F., Yusof, N., & Ismail, N. F. (2019). The application of fuzzy analytic hierarchy process (FAHP) approach to solve multi-criteria decision making (MCDM) problems. In Journal of Physics: Conference Series (Vol. 1358, No. 1, p. 012081). IOP Publishing.
Mashima, D. C. A. A. (2012). Evaluating electricity theft detectors in smart grid networks. International Workshop on Recent Advances in Intrusion Detection.
Mutani, G., & Todeschi, V. (2018). Energy Resilience, Vulnerability and Risk in Urban Spaces. Journal of Sustainable Development of Energy, Water and Environment Systems, 6(4).
Nik, V. M., Perera, A. T. D., & Chen, D. (2020). Towards climate resilient urban energy systems: a review. National Science Review.
O’Brien, G. (2009). Vulnerability and resilience in the European energy system. Energy & Environment, 20(3), 399–410.
Ohshita, S. J. K. (2017). Resilient Urban Energy: Making City Systems Energy Efficient, Low Carbon and Resilient in a Changing Climate. European Council for an Energy Efficient Economy.
Pasimeni, M. R., Petrosillo, I., Aretano, R., Semeraro, T., De Marco, A., Zaccarelli, N., & Zurlini, G. (2014). Scales, strategies and actions for effective energy planning: A review. Energy Policy, 65, 165–174.
Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J.-L., & Hong, T. (2020). Quantifying the impacts of climate change and extreme climate events on energy systems. Nature Energy, 5(2), 150–159.
Perrone, D., & Hornberger, G. M. (2014). Water, food, and energy security: scrambling for resources or solutions? Wiley Interdisciplinary Reviews: Water, 1(1).
Platt, S., Brown, D., & Hughes, M. (2016). Measuring resilience and recovery. International Journal of Disaster Risk Reduction, 19, 447–460.
Portugal Pereira, J., Troncoso Parady, G., & Castro Dominguez, B. (2014). Japan’s energy conundrum: Post-Fukushima scenarios from a life cycle perspective. Energy Policy, 67, 104–115.
Razmjoo, A. A., Sumper, A., & Davarpanah, A. (2019). Development of sustainable energy indexes by the utilization of new indicators: A comparative study. Energy Reports, 5, 375–383.
Roege, P. E., Collier, Z. A., Mancillas, J., McDonagh, J. A., & Linkov, I. (2014). Metrics for energy resilience. Energy Policy, 72, 249–256.
Salimi, M., & Al-Ghamdi, S. G. (2020). Climate change impacts on critical urban infrastructure and urban resiliency strategies for the Middle East. Sustainable Cities and Society, 54, 101948.
Scanlon, B. R., Duncan, I., & Reedy, R. C. (2013). Drought and the water–energy nexus in Texas. Environmental Research Letters, 8(4), 45033.
Sharifi, A., & Yamagata, Y. (2015). A Conceptual Framework for Assessment of Urban Energy Resilience. Energy Procedia, 75, 2904–2909.
Sharifi, A., & Yamagata, Y. (2016). Principles and criteria for assessing urban energy resilience: A literature review. In Renewable and Sustainable Energy Reviews (Vol. 60, pp. 1654–1677). Elsevier Ltd.
Temby, O., Kapsis, K., Berton, H., Rosenbloom, D., Gibson, G., Athienitis, A., & Meadowcroft, J. (2014). Building-integrated photovoltaics: distributed energy development for urban sustainability. Environment: Science and Policy for Sustainable Development, 56(6), 4–17.
Vale, L. J., & Campanella, T. J. (2005). The resilient city: How modern cities recover from disaster. Oxford University Press.
Van der Merwe, S. E., Biggs, R., & Preiser, R. (2018). A framework for conceptualizing and assessing the resilience of essential services produced by socio-technical systems. Ecology and Society, 23(2).
Mahad, N. F., Yusof, N., & Ismail, N. F. (2019, November). The application of fuzzy analytic hierarchy process (FAHP) approach to solve multi-criteria decision making (MCDM) problems. In Journal of Physics: Conference Series (Vol. 1358, No. 1, p. 012081). IOP Publishing.