الماسی، ع.، مرادی، م.، شرفی، ک. و عباسی، ش. 1393. تغییرات فصلی کیفیت هوای کرمانشاه از نظر غلظت آلاینده PM10 در دوره 4 ساله (1387-90)، سلامت و بهداشت، 5(2): 149-158.
بخشیزاده، ف.، رضائیان، ه. و اکبری، م. 1394. مدلسازی مکانی-زمانی سه بعدی پراکنش آلایندة اکسیدهای ازت هوا ناشی از ترافیک در تقاطع خیابان ولیعصر-فاطمی شهر تهران، تحلیل فضایی مخاطرات محیطی، 2(1): 43-62.
جدی، ح.، عباسپور، ر.ع.، خالصیان، م. و علویپناه، ک. 1396. پیشبینی غلظت آلاینده مونوکسیدکربن در کلانشهر تهران با استفاده از شبکههای عصبی مصنوعی، علوم و تکنولوژی محیطزیست، 19(5): 15-25.
رستمی فصیح، ز.، مصداقینیا، ع.، ندافی، ک.، نبیزاده نودهی، ر.، محوی، ا.ح. و هادی، م. 1394. پیشبینی شاخص کیفیت هوا برمبنای متغیرهای هواشناسی و مؤلفههایخودهمبسته با استفاده از شبکه عصبی مصنوعی، علوم پزشکی رازی، 22(137): 31-43.
رایگانی، ب. و خیراندیش، ز. 1396. بهرهگیری از سری زمانی دادههای ماهوارهای بهمنظور اعتبارسنجی کانونهای شناسایی شده تولید گرد و غبار استان البرز، تحلیل فضایی مخاطرات محیطی، 4(4): 1-18.
رفیعپور گتابی، م.، آل شیخ، ع.ا.، علیمحمدی، ع. و صادقی نیارکی، ا. 1395. توسعة مدل پیشبینی غلظت ازن در هوا با استفاده از شبکه عصبی مصنوعی، محیطزیست طبیعی، منابع طبیعی ایران، 69(1): 47-60.
سلطانیگردفرامرزی، ط.، مفیدی، ع. و گندمکار، ا. 1394. بررسی همدیدی روزهای بسیار آلوده در شهر مشهد مورد مطالعه 13 و 14 نوامبر، تحلیل فضایی مخاطرات محیطی، 2(4): 95-112.
نصیری، ب.، زارعی چقابلکی، ز.، حلیمی، م. و رستمی فتحآبادی، م. 1395. بررسی تغییرات ارتفاع و ضخامت لایه مرزی در شرایط گردوغباری شهر اهواز، تحلیل فضایی مخاطرات محیطی، 3(2): 52-64.
Akbarzadeh, A., Vesali Naseh, M.R. and NodeFarahani, M. 2020. Carbon monoxide prediction in the atmosphere of Tehran using developed support vector machine. Pollution, 6(1): 43-57.
Alexandrov, V.D., Velikov, S.K., Donev, E.H. and Ivanov, D.M. 2005. Quantifying nonlinearities in ground level ozone behavior at mountain-valley station at ovnarsko, bulgaria by using neural networksa. Bulgarian Geophysical, 31: 1-4.
Alves, L., Sperandio Nascimento, E.G. and Moreira, D.M. 2019. Hourly tropospheric ozone concentration forecasting using deep learning. WIT Transactions on Ecology and the Environment, 236: 129-138.
Azid, A., Juahir, H., Latif, M.T., Zain, S.M. and Osman, M.R. 2013. Feed-forward artificial neural network model for air pollutant index prediction in the southern region of peninsular malaysia. J.Environmental Protection 4(12):1-10.
Balram, D., Lian, K.Y. and Sebastian, N. 2019. Air quality warning system based on a localized PM2.5 soft sensor using a novel approach of Bayesian regularized neural network via forward feature selection. Ecotoxicology and Environmental Safety, 182(30): 1-9.
Cabaneros, S.M., Hughes, B.R. and Calautit, J.K. 2017. Hybrid artificial neural network models for effective prediction and mitigation of urban roadside NO2 pollution. Energy Procedia, 142: 3524-3530.
Chen, G. 2008. Encyclopedia of statistics in quality and reliability. John Wiley and Sons Ltd pp. 1800.
Chen, S.X., Hong, X., Harris, C.J. and Sharkey, P.M. 2004. Sparse modeling using orthogonal forward regression with PRESS statistic and regularization. IEEE Transactions on Systems Man and Cybernetics Part B, 34(2): 898-911.
Cheng, S.Y., Li, L., Chen, D.S. and Li, J.B. 2012. A neural network based ensemble approach for improving the accuracy of meteorological fields used for regional air quality modeling. Environmental Management, 112: 404–414.
Cogliani, E. 2001. Air pollution forecast in cities by an air pollution index highly correlated with meteorological variables. Atmospheric Environment, 35(16): 2871-2877.
Coman, A., Ionescu, A. and Candau, Y. 2008. Hourly ozone prediction for a 24-h horizon using neural networks. Environmental Modelling and Software, 23(12): 1407–1421.
Dirk, V.P. and Bart. L. 2004. Customer attribution analysis for financial services using proportional hard models. Operational Research, 157(1):196 -277.
Eksioglu, B., Demirer, R. and Capar, I. 2005. Subset selection in multiple linear regression: a new mathematical programming approach. Computers and Industrial Engineering, 49(1): 155 -167.
Famili, A., Shen, W.M., Weber, R. and Simoudis, E. 1997. Data preprocessing and intelligent data analysis. Intelligent Data Analysis, 1(1-4): 3–23.
Gardner, M.W. and Dorling, S.R. 1999. Neural network modeling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 33(5): 709–719.
Guajardo, J., Weber, R. and Miranda, J. 2006. A forecating methodology using support vector regression and dynamic feature selection. Information & Knowledge Management, 5(4): 329-335.
Guyon, I. and Elisseeff, A. 2003. An introduction to variable and feature selection. Machine Learning Research, 3: 1157–1182.
Hrust, L., Klaic, Z.B., Krizan, J., Antonic, O. and Hercog, P. 2009. Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations. Atmospheric Environment, 43(35): 5588–5596.
Khan, J.A., Aelst, S.V. and Zamar. R.H. 2007. Building a robust linear model with forward selection and stepwise procedures. Computational Statistics and Data Analysis, 52(1): 239-248.
Kolehmainen, M., Martikainen, H. and Ruuskanen. J. 2001. Neural networks and periodic components used in air quality forecasting. Atmospheric Environment, 35(5): 815–825.
Kurt, A. and Oktay, A.B. 2010. Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. Expert Systems with Applications, 37(12): 7986–7992.
Pastor Barsenas, B., Soria ivas, E. and Martın-Guerrero, J.D. 2005. Unbiased sensitivity analysis and pruning techniques in neural networks for surface ozone modeling. Ecological Modelling, 182(2): 149–158.
Perez, P. 2012. Combined model for PM10 forecasting in a large city. Atmospheric Environment, 60: 271–276.
Prasad, K., Gorai, A.k. and Goyal, P. 2016. Developmen to ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time. Atmospheric environment, 128: 246-262.
Rakotomamonjy, A. 2002. Variable selection using SVM based criteria. Machine Learning Research, 3: 1357–1370.
Sharifi, K., Khosravi, T., Moradi, M. and Pirsaheb, M. 2015. Air quality and variations in PM10 pollutant concentration in western Iran during a four-year period (2008-2011), Kermanshah- a case study. Engineering Science and Technology, 10(1): 47-56.
Stamenkovic, L.J., Antanasijevic, D.Z., Ristic, M.D., Peric Grujic, A.A. and Pocajt, V.V. 2016. Prediction of nitrogen oxides emissions at the national level based on optimized artificial neural network model. Air Quality Atmosphere & Health, 10:15-23.
Unnikrishnan, R. and Madhu, G. 2019. Comparative study on the efects of meteorological and pollutant
parameters on ANN modelling for prediction of SO2. SN Applied Sciences, 1: 1-12.
Wang, X.X., Chen, S., Lowe, D. and Harris, C.J. 2006. Sparse support vector regression based on orthogonal forward selection for the generalized kernel model. Neurocomputing, 70(1-3): 462 -474.
Zinatizadeh, A.A., Zinadini, S., Pirsaheb, M., Atafar, Z., Kurdian, A.R., Dezfoulinejad, A. and Yavari, F. 2014. Dust level forecasting and its interaction with gaseous pollutants using artificial neural network: A case study for kermanshah, Iran. Energy and Environment, 5(1): 51-58.
Zhao, C. 2016. Air quality forecasting using neural networks, master’s thesis, Supervisor: Prof. Juha Karhunen, Department of Computer Science, Aalto University.
Zhu, Y.M., Lu, X.X. and Zhou, Y. 2007. Suspended sediment flux modeling with artificial neural network: An example of the long Chuan Jiang River in the Upper Yangtze Catchment China. Geomorphology, 84(1): 111-125.