خوردگی میکروبی متاثر از عوامل محیط زیستی در آب چرخه خنک کن نیروگاه حرارتی بندر عباس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پژوهشی شیمی و فرآیند، پژوهشگاه نیرو

2 کارشناس آزمایشگاه، گروه پژوهشی شیمی و فرایند، پژوهشگاه نیرو، تهران، ایران

چکیده

آب دریای خلیج فارس به‌دلیل غلظت بالای یون‌های کلرید، کلسیم، منیزیم و سدیم دارای قلیاییت، هدایت و شوری بالایی می‌باشد و در نیروگاه بندرعباس از این آب به منظور تأمین آب چرخه خنک‌کن استفاده می‌شود. بررسی و ارزیابی آزمون‌های میکروبی نشان‌دهنده غلظت‌های بالای انواع گونه‌های میکروبی می‌باشد که دلیل اصلی آن یون‌های فلوراید، سولفات و غلظت بالای رسوب‌گذارها می‌باشد. آزمون شمارش کل باکتری‌ها نشان دهنده عدد cfu/ml 104 می‌باشد که مقدار بالایی به حساب می‌آید. عامل اصلی تغذیه عوامل میکروبی غلظت بالای یون‌ها بویژه یون کلرید در نمونه آب خنک کن می‌باشد و با توجه به غلظت بالای منیزیم به عنوان عامل رسوب‌گذار بایستی میزان آن در آب خنک‌کن کنترل شود. همچنین عامل رشد باکتری‌های احیا کننده سولفات، غلظت بالای سولفات در آب سیستم خنک‌کننده در این نیروگاه می‌باشد. از اینرو راهکار کاهش غلظت عمومی یون‌ها با استفاده از روش‌هایی از قبیل اسمز معکوس و رزین‌های تبادل یونی به عنوان اولویت اول در جهت جلوگیری از خوردگی‌های میکروبی پیشنهاد می‌گردد. همچنین روش‌های کلرزنی به‌دلیل به عنوان اولویت دوم و روش ازن زنی به دلیل هزینه بالاتر نسبت به کلرزنی، به عنوان اولویت سوم پیشنهاد می‌گردد. استفاده از روش‌های کاهش غلظت و حذف گزینش‌پذیر سولفات به عنوان اولویت سوم می باشد.

کلیدواژه‌ها

موضوعات


Afshar, M.G., et al. (2023). Batch and continuous bleaching regimen in the cooling tower of Montazer Ghaem power plant. Journal of Hazardous Materials Advances, 11, 100339.
García, K., et al. (2008). Lost iron and iron converted into rust in steels submitted to dry–wet corrosion process. Corrosion Science, 50(3), 763-772.
Ghaedi, H., Abedini, E., & Ansari, A.N. (2022). Thermoeconomic analysis of seawater desalination methods in Bandar Abbas power plant. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(11), 559.
Ghamati, E. & Roudaki, J.M. (2022). A Novel Integrated Design for Heat and Water Recovery from Exhaust Flue Gas of Bandar Abbas Power Plant. Energy and Environment Research, 12(1), 1-26.
Ghahraman Afshar, M., Esmaeilpour, M. & Ghaseminejad, H. (2023). Investigation of water consumption in Shahid Montazer Ghaem steam power plant and technical-economic evaluation of the boilers' blowdown recycling solutions. Nashrieh Shimi va Mohandesi Shimi Iran.
Ilhan-Sungur, E. & Çotuk, A. (2010). Microbial corrosion of galvanized steel in a simulated recirculating cooling tower system. Corrosion Science, 52(1), 161-171.
Jolley, J. R., Robert, L., Pitt, W. W., Taylor, J. R., Fred, G., Hartmann, S. J., ... & Thompson, J. E. (1977). Experimental Assessment of Halogenated Organics in Waters from Cooling Towers and Once-Through Systems (No. CONF-771070-2). NETL (National Energy Technology Laboratory, Pittsburgh, PA, and Morgantown, WV (United States)).
Klose, S., Wernecke, K.D. & Makeschin, F. (2004). Microbial activities in forest soils exposed to chronic depositions from a lignite power plant. Soil Biology and Biochemistry, 36(12), 1913-1923.
Liu, H. & Cheng, Y.F. (2020). Microbial corrosion of initial perforation on abandoned pipelines in wet soil containing sulfate-reducing bacteria. Colloids and Surfaces B: Biointerfaces, 190, 110899.
Licina, G.J. & Cubicciotti, D. (1989). Microbial-induced corrosion in nuclear power plant materials. JOM, 41, 23-27.
Samimi, A. (2013). Micro-organisms of cooling tower problems and how to manage them. International Journal of Basic and Applied science, Indonesia, 705-715.
Liu, Y., et al. (2009). Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems. Biofouling, 25(3), 241-253.
Little, B.J. & Lee, J.S. (2014). Microbiologically influenced corrosion: an update. International Materials Reviews, 393- 384, (7) 59.
Little, B., Wagner, P. & Mansfeld, F. (1992). An overview of microbiologically influenced corrosion. Electrochimica acta, 37(12), 2185-2194.
Miller, J. (1980). Principles of microbial corrosion. British Corrosion Journal, 15(2), 92-94.
Morrison, F. (2015). Saving water with cooling towers. ASHRAE Journal, 57(8), 20.
Raptis, C.E. & Pfister, S. (2016). Global freshwater thermal emissions from steam-electric power plants with once-through cooling systems. Energy, 97, 46-57.
Reynolds, J.Z. (1980). Power plant cooling systems: policy alternatives. Science, 207(4429), 367-372.