طراحی زیست محیطی سازه های پیش ساخته اضطراری با رویکرد کاهش مصرف انرژی و آلودگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فناوری معماری دانشکده معماری و شهرسازی، دانشگاه هنر اسلامی تبریز، تبریز، ایران

2 استاد دانشکده معماری و شهرسازی، دانشگاه هنر اسلامی تبریز، تبریز، ایران

3 استاد دانشکده معماری و شهرسازی، دانشگاه هنر، تهران، ایران

چکیده

پس از بلایای طبیعی یکی از مشکلاتی که همواره سازمان های مدیریت بحران با آن مواجه هستند، فراهم نمودن مکان های اسکان موقت است. برای این امر معمولا از سازه های پیش ساخته استفاده می شود. اکثر سازه های پیش ساخته فرم های مکعب مستطیلی دارند. از جمله مشکلات این فرم نیاز به تعدد ماشین‌های سنگین برای حمل و نقل است که منجر به افزایش مصرف سوخت های فسیلی و آلودگی هوا می شود. در این تحقیق برای کاهش حمل و نقل، تقسیم کل سازه به اجزای کوچکتر درنظر گرفته شد. علاوه بر آن طراحی دیتیل‌های ریلی شکل برای حرکت کردن و دیتیل پین مانند بزرگ برای باز و بسته شدن سازه، نیاز به نیروی کار متخصص را کاهش می‌دهد. جهت مدل سازی این طرح از نرم افزار Rhinoceros 3D استفاده شده و برای ایجاد دوران ها افزونه‌ی Grasshopper به کار رفته است. همچنین برای بدست آوردن زاویه بهینه برای بسته بندی سازه مورد نظر از مقایسه ی دو الگوریتم بهینه یابی Genetic و مدل Surrogate استفاده شد. مدل شبه نیم کره طراحی شده در این تحقیق می تواند بیش از %50 میزان سوخت مصرفی در اثر کاهش حمل و نقل را بهینه سازد و همچنین امدادرسانی سریعتر انجام شود.

کلیدواژه‌ها


Agren, R. & Wing, R.D. (2014). Five moments in the history of industrialized building, Construction Management and Economics, 32(1 – 2), 7 – 15.

Aye, L., Ngo, T., Crawford, R.H., Gammampila, R., & Mendis, P. (2012). Life cycle greenhouse gas emissions and energy analysis of prefabricated reusable building modules. Energy and Buildings,  47, 159-168.

Cao, X., Li, X., Zhu, Y., & Zhang, Z. (2015). A comparative study of environmental performance between prefabricated and traditional residential buildings in China. Journal of Cleaner Production,  109, 131-143.
Celani, G., & Vaz, C.E.V. (2012). CAD Scripting and Visual Programming Languages for Implementing Computational Design Concepts:A Comparison From A Pedagogical Point Of View. international journal of architectural computing, 10(01), 121-137.
Chang, Y., Li, X., Masanet, E., Zhang, L., Huang, Z., & Ries, R. (2018). Unlocking the green opportunity for prefabricated buildings and construction in China, Resources. Conservation and Recycling, 139, 259-261.
Colombo, I.G., Colombo, M., & Prisco, M. (2015). Bending behaviour of Textile Reinforced Concrete sandwich beams. Construction and Building  Materials, 95, 675-685.  
Dave, M., Watson, B., & Prasad, D. (2017). Performance and Perception in Prefab Housing: An Exploratory Industry Survey on Sustainability and Affordability. Procedia Engineering, 180, 676-686.

Freitas, J.D.S., Cronemberger, J., Soares, R.M., & Amorim, C.N.D. (2020). Modeling and assessing BIPV envelopes using parametric Rhinoceros plugins Grasshopper and Ladybug. Renewable Energy, 160, 1468-1479.

Gispert, E.P., Delmas, D.S.,  Fuente, A.D.L.,  Moonen, S.P.G., & Josa, A. (2020). Environmental analysis of concrete deep foundations: Influence of prefabrication, concrete strength, and design codes. Journal of Cleaner Production, 244, 118751.

Hao, J.L., Cheng, B., Lu, W., Xu, J., Wang, J., Bu, W., & Guo, Z. (2020). Carbon emission reduction in prefabrication construction during materialization stage: A BIM-based life-cycle assessment approach. Science of The Total Environment, 723, 137870.

Hong, J., Shen, G.Q., Li, Z., Zhang, B., & Zhang, W. (2018). Barriers to promoting prefabricated construction in China: A cost–benefit analysis. Journal of Cleaner Production, 172, 649-660.

Hong, J., Shen, G.Q., Mao, C., Li, Z., & Li, K. (2016). Life-cycle energy analysis of prefabricated building components: an input–output-based hybrid model. Journal of Cleaner Production, 112(4), 2198-2207.

Ilbeigi, M., Ghomeishi, M., & Dehghanbanadaki, A. (2020). Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm. Sustainable Cities and Society, 61, 102325.

Jaillon, L., Poon, C.S., & Chiang, Y.H. (2009). Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong. Waste Management, 29(1), 309-320.

Kwame, S., Dzegblor, N.K., & Lodonu, J.C. (2015). The Use of Computer-Based Tutorial to Augment Teaching and Learning of Computer Software Application: A Case Study of Rhinoceros 3d Software. International Journal OF Innovative Research & Development, 4(2), 209-216.

Li, X., Shen, G.Q., Wu, P., & Yue, T. (2019)a. Integrating Building Information Modeling and Prefabrication Housing Production. Automation in Construction, 100, 46-60.

Li, S., Trevelyan, J., Wu, Z., Lian, H., Wang, D., & Zhang, W. (2019)b. An adaptive SVD–Krylov reduced order model for surrogate based structural shape optimization through isogeometric boundary element method. Computer Methods in Applied Mechanics and Engineering, 349, 312-338.
Liu, M., Jia, S., & Liu, X. (2019). Evaluation of mitigation potential of GHG emissions from the construction of prefabricated subway station. Journal of Cleaner Production,  236, 117700.
Lu., W., Lee, W.M.W., Xue, F., & Xu, J. (2021). Revisiting the effects of prefabrication on construction waste minimization: A quantitative study using bigger data. Resources, Conservation and Recycling, 170, 105579.
Lumsden, K. (2004). Truck masses and dimensions - impact on transport efficiency. Department of Logistics and Transportation, Chalmers University of Technology, Gothenburg, Sweden.
Powers, D.J., Scott, M.A., & Mackey, T.C. (2010). Freight Container Lifting Standard. Washington River Protection Solutions, LLC, RPP-40736.
Rubio, J.N., Pineda, P., & Martinez, A.G. (2019). Sustainability, prefabrication and building optimization under different durability and re-using scenarios: Potential of dry precast structural connections. Sustainable Cities and Society, 44, 614-628.
Rutten, D. (2013). Galapagos: On the Logic and Limitations of Generic Solvers. Architectural Design, 83(2), 132-135.
Stallen, M., Chabannes, Y., & Steinberg, F. (1994). Potentials of prefabrication for self-help and mutual-aid housing in developing countries. Habitat International, 18(2), 13-39.
Teng, Y., Li, K., Pan, W., & Ng, T. (2018). Reducing building life cycle carbon emissions through prefabrication: Evidence from and gaps in empirical studies. Building and Environment, 132, 125-136.
Tavares, V., Lacerda, N., & Freire, F. (2019). Embodied energy and greenhouse gas emissions analysis of a prefabricated modular house: The “Moby” case study. Journal of Cleaner Production,  212, 1044-1053.

Vantyghem, G., Ooms, T., & Corte, W.D. (2021).VoxelPrint: A Grasshopper plug-in for voxel-based numerical simulation of concrete printing. Automation in Construction, 122, 103469.

Wilson, I.D., & Roach, P.A. (1999). Principles of combinatorial optimization applied to container-ship stowage planning. Journal of Heuristics, 5, 403–418.
Wortmann, T. (2017, April). Opossum: Introducing and Evaluating a Model-based Optimization Tool for Grasshopper. Protocols, Flows and Glitches, Proceedings of the 22nd International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong. 283-292.
Zhang, W., Lee, M.W., Jaillon, L., & Poon, C.S. (2018). The hindrance to using prefabrication in Hong Kong's building industry. Journal of Cleaner Production, 204, 70-81.
Zhu, H., Hong, J., Shen, G.Q., Mao, C., Zhang, H., & Li, Z. (2018). The exploration of the life-cycle energy saving potential for using prefabrication in residential buildings in China. Energy and Buildings, 166, 561-570.