Abel, C., Horion, S., Tagesson, T., Brandt, M., & Fensholt, R. (2019). Towards improved remote sensing based monitoring of dryland ecosystem functioning using sequential linear regression slopes (SeRGS). Remote Sensing of Environment, 224, 317–332. https://doi.org/10.1016/j.rse.2019.02.010
Actionbioscience. (2015). Urban Heat Islands: Hotter Cities. http://www.actionbioscience. org/ environment/ voogt.html
Amini, F., & Hu, G. (2021). A two-layer feature selection method using Genetic Algorithm and Elastic Net. Expert Systems with Applications, 166, 114072. https://doi.org/10.1016/j.eswa.2020.114072
Chen, Y., Zheng, B., & Hu, Y. (2020). Numerical Simulation of Local Climate Zone Cooling Achieved through Modification of Trees, Albedo and Green Roofs—A Case Study of Changsha, China. Sustainability, 12(7), 2752. https://doi.org/10.3390/su12072752
Dong, J., Lin, M., Zuo, J., Lin, T., Liu, J., Sun, C., & Luo, J. (2020). Quantitative study on the cooling effect of green roofs in a high-density urban Area—A case study of Xiamen, China. Journal of Cleaner Production, 255, 120152. https://doi.org/10.1016/j.jclepro.2020.120152
Fahmy, M., Ibrahim, Y., Hanafi, E., & Barakat, M. (2018). Would LEED-UHI greenery and high albedo strategies mitigate climate change at neighborhood scale in Cairo, Egypt? Building Simulation, 11(6), 1273–1288. https://doi.org/10.1007/s12273-018-0463-7
Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95–99.
Govind, N. R., & Ramesh, H. (2020). Exploring the relationship between LST and land cover of Bengaluru by concentric ring approach. Environmental Monitoring and Assessment, 192(10), 650. https://doi.org/10.1007/ s10661-020-08601-x
Han, S., Bian, H., Tie, X., Xie, Y., Sun, M., & Liu, A. (2009). Impact of nocturnal planetary boundary layer on urban air pollutants: Measurements from a 250-m tower over Tianjin, China. Journal of Hazardous Materials, 162(1), 264–269. https://doi.org/10.1016/j.jhazmat.2008.05.056
Hendel, M., Gutierrez, P., Colombert, M., Diab, Y., & Royon, L. (2016). Measuring the effects of urban heat island mitigation techniques in the field: Application to the case of pavement-watering in Paris. Urban Climate, 16, 43–58. https://doi.org/10.1016/j.uclim.2016.02.003
Huang, B., Ni, G., & Grimmond, C. S. B. (2019). Impacts of Urban Expansion on Relatively Smaller Surrounding Cities during Heat Waves. Atmosphere, 10(7), 364. https://doi.org/10.3390/atmos10070364
Johnson, D. P., Stanforth, A., Lulla, V., & Luber, G. (2012). Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data. Applied Geography, 35(1), 23–31. https:// doi.org/ 10.1016/j.apgeog.2012.04.006
Kutner, M., Nachtsheim, C., results, search, & Li, W. (2004). Applied Linear Statistical Models (5th edition). McGraw-Hill/Irwin.
Li, Y., Liu, Y., Ranagalage, M., Zhang, H., & Zhou, R. (2020). Examining Land Use/Land Cover Change and the Summertime Surface Urban Heat Island Effect in Fast-Growing Greater Hefei, China: Implications for Sustainable Land Development. ISPRS International Journal of Geo-Information, 9(10), 568. https://doi.org/10.3390/ijgi9100568
Lin, T., Sun, C., Li, X., Zhao, Q., Zhang, G., Ge, R., Ye, H., Huang, N., & Yin, K. (2016). Spatial pattern of urban functional landscapes along an urban–rural gradient: A case study in Xiamen City, China. International Journal of Applied Earth Observation and Geoinformation, 46, 22–30. https://doi.org/10.1016/j.jag.2015.11.014
Liu, T., Qi, Y., Cao, G., & Liu, H. (2015). Spatial patterns, driving forces, and urbanization effects of China’s internal migration: County-level analysis based on the 2000 and 2010 censuses. Journal of Geographical Sciences, 25(2), 236–256. https://doi.org/10.1007/s11442-015-1165-z
Madhumathi, A., Subhashini, S., & VishnuPriya, J. (2018). The Urban Heat Island Effect its Causes and Mitigation with Reference to the Thermal Properties of Roof Coverings (SSRN Scholarly Paper ID 3207224). Social Science Research Network. https://doi.org/10.2139/ssrn.3207224
Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522–538. https://doi.org/10.1016/j.jenvman.2017.03.095
Mostofi, N., & Hasanlou, M. (2017). Feature selection of various land cover indices for monitoring surface heat island in Tehran city using Landsat 8 imagery. Journal of Environmental Engineering and Landscape Management, 25(3), 241–250. https://doi.org/10.3846/16486897.2016.1223084
Motieyan, H., & Mesgari, M. S. (2018). Development of a TOD Index through Spatial Analyses and HFIS in Tehran, Iran. Journal of Urban Planning and Development, 144(4), 04018038. https:// doi.org/ 10.1061/ (ASCE)UP.1943-5444.0000484
Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24. https://doi.org/10.1002/qj.49710845502
Parker, J. (2020). The Leeds urban heat island and its implications for energy use and thermal comfort. Energy and Buildings, 110636. https://doi.org/10.1016/j.enbuild.2020.110636
Sanchez, L., & Reames, T. G. (2019). Cooling Detroit: A socio-spatial analysis of equity in green roofs as an urban heat island mitigation strategy. Urban Forestry & Urban Greening, 44, 126331. https://doi.org/ 10.1016/j.ufug.2019.04.014
Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renewable and Sustainable Energy Reviews, 26, 224–240. https://doi.org/10.1016/ j.rser.2013.05.047
Santamouris, M. (2014). Cooling the cities – A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682–703. https://doi.org/10.1016/j.solener.2012.07.003
Sharma, A., Fernando, H. J. S., Hamlet, A. F., Hellmann, J. J., Barlage, M., & Chen, F. (2017). Urban meteorological modeling using WRF: a sensitivity study. 37(4), 1885–1900. https://doi.org/10.1002/joc.4819
Singh, A., & Singh, K. K. (2017). Satellite image classification using Genetic Algorithm trained radial basis function neural network, application to the detection of flooded areas. Journal of Visual Communication and Image Representation, 42, 173–182. https://doi.org/10.1016/j.jvcir.2016.11.017
Theeuwes, N. E., Steeneveld, G.-J., Ronda, R. J., Rotach, M. W., & Holtslag, A. A. M. (2015). Cool city mornings by urban heat. Environmental Research Letters, 10(11), 114022. https://doi.org/10.1088/1748-9326/10/11/114022
Xian, G., & Crane, M. (2006). An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sensing of Environment, 104(2), 147–156. https://doi.org/10.1016/j.rse.2005.09.023
Yang, J., & Bou-Zeid, E. (2019). Scale dependence of the benefits and efficiency of green and cool roofs. Landscape and Urban Planning, 185, 127–140. https://doi.org/10.1016/j.landurbplan.2019.02.004
Zhang, H., Li, T.-T., & Han, J.-J. (2020). Quantifying the relationship between land use features and intra-surface urban heat island effect: Study on downtown Shanghai. Applied Geography, 125, 102305. https://doi.org/10.1016/j.apgeog.2020.102305
Zhang, H., Qi, Z., Ye, X., Cai, Y., Ma, W., & Chen, M. (2013). Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Applied Geography, 44, 121–133. https://doi.org/10.1016/j.apgeog.2013.07.021
Zhou, W., Wang, J., & Cadenasso, M. L. (2017). Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sensing of Environment, 195, 1–12. https://doi.org/10.1016/ j.rse.2017.03.043