تعیین بهینه پوشش سقف ساختمانها به منظور کنترل جزایر حرارتی شهری با استفاده از الگوریتم ژنتیک و تحلیلهای مکانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی نقشه برداری، دانشکده فنی دانشگاه آزاد اسلامی واحد تهران جنوب

2 گروه مهندسی نقشه برداری، دانشکده عمران، دانشگاه صنعتی نوشیروانی بابل

چکیده

یکی از عوامل تاثیرگذار بر روی پدیده جزایر حرارتی شهری، نوع پوشش سقف قطعات ملکی است که امروزه در جوامع پیشرفته توجه ویژه‌ای به آن می‌شود. اما با توجه به نحوه تاثیر متفاوت پوششهای مختلف و همچنین نتایج متفاوت پوششها در مکانهای مختلف، وجود یک سامانه تصمیم گیری مکانی جهت انتخاب پوشش بهینه در مکان بهینه اجتناب ناپذیر می‌باشد که تاکنون چنین سامانه‌ای پیاده‌سازی نشده است. لذا در این تحقیق سامانه‌ای ایجاد شده است که شامل دو مرحله اصلی برآورد درجه حرارت سطح منطقه مورد مطالعه و انتخاب مجموعه‌ای بهینه از قطعات ملکی برای تغییر پوشش سقف آنها با سه نوع پوشش ازقبل تعریف شده می‌باشد. سپس به منظور ارزیابی نتایج، مقادیر جدید درجه حرارت سطح و نمایش جزایر حرارتی شهری مجددا محاسبه گردید. با توجه به مدل فوق، انحراف معیار جزایر حرارتی منطقه از 222/13 درجه سلسیوس به 781/10 درجه سلسیوس بهبود یافته است که نشان دهنده افزایش یکنواختی این اثر در سطح منطقه است. همچنین نتایج حاصل از انتخاب قطعات ملکی و نوع پوشش آنها توسط مدل ارائه شده نشان می‌دهد که برای کنترل جزایر حرارتی در نیازمند استفاده از پوشش گیاهی در پیرامون منطقه می‌باشد زیرا این پوشش تاثیرات وسیعتری نسبت به سایر پوششها دارد.

کلیدواژه‌ها


Abel, C., Horion, S., Tagesson, T., Brandt, M., & Fensholt, R. (2019). Towards improved remote sensing based monitoring of dryland ecosystem functioning using sequential linear regression slopes (SeRGS). Remote Sensing of Environment, 224, 317–332. https://doi.org/10.1016/j.rse.2019.02.010
Actionbioscience. (2015). Urban Heat Islands: Hotter Cities. http://www.actionbioscience. org/ environment/ voogt.html
Amini, F., & Hu, G. (2021). A two-layer feature selection method using Genetic Algorithm and Elastic Net. Expert Systems with Applications, 166, 114072. https://doi.org/10.1016/j.eswa.2020.114072
Chen, Y., Zheng, B., & Hu, Y. (2020). Numerical Simulation of Local Climate Zone Cooling Achieved through Modification of Trees, Albedo and Green Roofs—A Case Study of Changsha, China. Sustainability, 12(7), 2752. https://doi.org/10.3390/su12072752
Dong, J., Lin, M., Zuo, J., Lin, T., Liu, J., Sun, C., & Luo, J. (2020). Quantitative study on the cooling effect of green roofs in a high-density urban Area—A case study of Xiamen, China. Journal of Cleaner Production, 255, 120152. https://doi.org/10.1016/j.jclepro.2020.120152
Fahmy, M., Ibrahim, Y., Hanafi, E., & Barakat, M. (2018). Would LEED-UHI greenery and high albedo strategies mitigate climate change at neighborhood scale in Cairo, Egypt? Building Simulation, 11(6), 1273–1288. https://doi.org/10.1007/s12273-018-0463-7
Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95–99.
Govind, N. R., & Ramesh, H. (2020). Exploring the relationship between LST and land cover of Bengaluru by concentric ring approach. Environmental Monitoring and Assessment, 192(10), 650. https://doi.org/10.1007/ s10661-020-08601-x
Han, S., Bian, H., Tie, X., Xie, Y., Sun, M., & Liu, A. (2009). Impact of nocturnal planetary boundary layer on urban air pollutants: Measurements from a 250-m tower over Tianjin, China. Journal of Hazardous Materials, 162(1), 264–269. https://doi.org/10.1016/j.jhazmat.2008.05.056
Hendel, M., Gutierrez, P., Colombert, M., Diab, Y., & Royon, L. (2016). Measuring the effects of urban heat island mitigation techniques in the field: Application to the case of pavement-watering in Paris. Urban Climate, 16, 43–58. https://doi.org/10.1016/j.uclim.2016.02.003
Huang, B., Ni, G., & Grimmond, C. S. B. (2019). Impacts of Urban Expansion on Relatively Smaller Surrounding Cities during Heat Waves. Atmosphere, 10(7), 364. https://doi.org/10.3390/atmos10070364
Johnson, D. P., Stanforth, A., Lulla, V., & Luber, G. (2012). Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data. Applied Geography, 35(1), 23–31. https:// doi.org/ 10.1016/j.apgeog.2012.04.006
Kutner, M., Nachtsheim, C., results, search, & Li, W. (2004). Applied Linear Statistical Models (5th edition). McGraw-Hill/Irwin.
Li, Y., Liu, Y., Ranagalage, M., Zhang, H., & Zhou, R. (2020). Examining Land Use/Land Cover Change and the Summertime Surface Urban Heat Island Effect in Fast-Growing Greater Hefei, China: Implications for Sustainable Land Development. ISPRS International Journal of Geo-Information, 9(10), 568. https://doi.org/10.3390/ijgi9100568
Lin, T., Sun, C., Li, X., Zhao, Q., Zhang, G., Ge, R., Ye, H., Huang, N., & Yin, K. (2016). Spatial pattern of urban functional landscapes along an urban–rural gradient: A case study in Xiamen City, China. International Journal of Applied Earth Observation and Geoinformation, 46, 22–30. https://doi.org/10.1016/j.jag.2015.11.014
Liu, T., Qi, Y., Cao, G., & Liu, H. (2015). Spatial patterns, driving forces, and urbanization effects of China’s internal migration: County-level analysis based on the 2000 and 2010 censuses. Journal of Geographical Sciences, 25(2), 236–256. https://doi.org/10.1007/s11442-015-1165-z
Madhumathi, A., Subhashini, S., & VishnuPriya, J. (2018). The Urban Heat Island Effect its Causes and Mitigation with Reference to the Thermal Properties of Roof Coverings (SSRN Scholarly Paper ID 3207224). Social Science Research Network. https://doi.org/10.2139/ssrn.3207224
Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522–538. https://doi.org/10.1016/j.jenvman.2017.03.095
Mostofi, N., & Hasanlou, M. (2017). Feature selection of various land cover indices for monitoring surface heat island in Tehran city using Landsat 8 imagery. Journal of Environmental Engineering and Landscape Management, 25(3), 241–250. https://doi.org/10.3846/16486897.2016.1223084
Motieyan, H., & Mesgari, M. S. (2018). Development of a TOD Index through Spatial Analyses and HFIS in Tehran, Iran. Journal of Urban Planning and Development, 144(4), 04018038. https:// doi.org/ 10.1061/ (ASCE)UP.1943-5444.0000484
Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24. https://doi.org/10.1002/qj.49710845502
Parker, J. (2020). The Leeds urban heat island and its implications for energy use and thermal comfort. Energy and Buildings, 110636. https://doi.org/10.1016/j.enbuild.2020.110636
Sanchez, L., & Reames, T. G. (2019). Cooling Detroit: A socio-spatial analysis of equity in green roofs as an urban heat island mitigation strategy. Urban Forestry & Urban Greening, 44, 126331. https://doi.org/ 10.1016/j.ufug.2019.04.014
Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renewable and Sustainable Energy Reviews, 26, 224–240. https://doi.org/10.1016/ j.rser.2013.05.047
Santamouris, M. (2014). Cooling the cities – A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682–703. https://doi.org/10.1016/j.solener.2012.07.003
Sharma, A., Fernando, H. J. S., Hamlet, A. F., Hellmann, J. J., Barlage, M., & Chen, F. (2017). Urban meteorological modeling using WRF: a sensitivity study. 37(4), 1885–1900. https://doi.org/10.1002/joc.4819
Singh, A., & Singh, K. K. (2017). Satellite image classification using Genetic Algorithm trained radial basis function neural network, application to the detection of flooded areas. Journal of Visual Communication and Image Representation, 42, 173–182. https://doi.org/10.1016/j.jvcir.2016.11.017
Theeuwes, N. E., Steeneveld, G.-J., Ronda, R. J., Rotach, M. W., & Holtslag, A. A. M. (2015). Cool city mornings by urban heat. Environmental Research Letters, 10(11), 114022. https://doi.org/10.1088/1748-9326/10/11/114022
Xian, G., & Crane, M. (2006). An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sensing of Environment, 104(2), 147–156. https://doi.org/10.1016/j.rse.2005.09.023
Yang, J., & Bou-Zeid, E. (2019). Scale dependence of the benefits and efficiency of green and cool roofs. Landscape and Urban Planning, 185, 127–140. https://doi.org/10.1016/j.landurbplan.2019.02.004
Zhang, H., Li, T.-T., & Han, J.-J. (2020). Quantifying the relationship between land use features and intra-surface urban heat island effect: Study on downtown Shanghai. Applied Geography, 125, 102305. https://doi.org/10.1016/j.apgeog.2020.102305
Zhang, H., Qi, Z., Ye, X., Cai, Y., Ma, W., & Chen, M. (2013). Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Applied Geography, 44, 121–133. https://doi.org/10.1016/j.apgeog.2013.07.021
Zhou, W., Wang, J., & Cadenasso, M. L. (2017). Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sensing of Environment, 195, 1–12. https://doi.org/10.1016/ j.rse.2017.03.043