بهینه‌سازی ساختار سیمای سرزمین با رویکرد تجزیه تحلیل شبکه اکولوژیک و تئوری گراف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو ی دکترا،دانشکده محیط زیست،دانشگاه تهران

2 دانشیار دانشکده محیط زیست،دانشگاه تهران

3 استادیار دانشکده محیط زیست دانشگاه تهران

4 دانشیار گروه طراحی دانشکده محیط زیست دانشگاه تهران

چکیده

تخریب شدید اراضی طبیعی در استان‌های شمالی منجر به خسارات زیادی به سیستم‌های اکولوژیکی این مناطق گشته است. این در حالی است که پیوستگی لکه‌های سبز و زیستگاه‌های گونه‌های جانوری یکی از مهم‌ترین ویژگـی آن‌هاست کـه حرکـت جـانوران و انتقـال ژن‌ها را در بـین زیستگاه‌ها میسر می‌سازد. با به‌کارگیری اصول اکولوژی سیمای سرزمین، مفـاهیم موجـود در تئوری گراف و شبکه اکولوژیک می‌توان به شـبیه‌سـازی و تجزیـه و تحلیـل شبکه‌های اکولوژیکی و زیستگاهی پرداخت و طرح مناسبی را برای بهبود ساختار، عملکرد و حفـظ تنـوع زیسـتی ارائـه کـرد. چارچوب ساخت و بهبود ساختار شبکه اکولوژیکی در این مطالعه مبتنی بر مدل تجزیه ‌و تحلیل الگوی فضایی مورفولوژیکی، تئوری گراف (به‌وسیله نرم‌افزار Conefor 2.6) و تجزیه ‌وتحلیل مسیر با کمترین هزینه توأم با در نظر گرفتن مقدار مقاومت و آستانه فاصله برای گونه قرقاول (Phasianus colchicus) است. در این شبکه اکولوژیک میزان محدود کریدورهای طبیعی در کنار تعداد زیاد هسته‌ها، نشان‌دهنده نیاز این شبکه به تدبیر کریدورهایی از سوی متخصصین است. به علاوه میزان کم منافذ درون هسته‌ها مؤید وضعیت مطلوب شبکه از حیث پیوستگی درونی هسته‌ها می‌باشد. لذا در این پژوهش، یک الگوی شناسایی و برنامه‌ریزی تبیین می‌گردد که قطعاً در مدل‌سازی سیمای‌سرزمین و برنامه‌ریزی فضایی شبکه‌های اکولوژیک کمک‌کننده خواهد بود.

کلیدواژه‌ها


صادقی بنیس ، م، (1394). استفاده از متریک های منظر در بهسازی شبکه اکولوژیک شهری، باغ نظر، 12(32)، صص 62-53.
پودات، ف؛ برق جلوه، ش؛ میرکریمی، ح، (1393). مروری تحلیلی بر چگونگی اندازه‌‌گیری پیوستگی اکولوژیک به‌‌منظور حفاظت از تنوع زیستی در شهرها، پژوهش‌‌های محیط‌‌زیست، 5 (10)، صص 210 -195 .
شفیعی نژاد، س؛ پودات، ف؛ فرخیان، ف، (1397). ارزیابی پیوستگی اکولوژیک لکه‌‌های سبز شهری با استفاده از تئوری گراف، مطالعه موردی کلانشهر اهواز، بوم شناسی کاربردی، 7(1)، صص 11-1.
عبدالهی، ص؛ ایلدرمی، ع، (1396). ارزیابی چیدمان مکانی سیمای سرزمین به منظور دستیابی به اقدامات حفاظتی، محیط‌زیست و توسعه، 8(16)، صص 5-18.
موحد، س؛ طبیبیان، م، (1397). بررسی تغییرات شبکه اکولوژیک و نقش آن در تاب‌آوری اکولوژیکی کلانشهر مشهد، محیط شناسی, 44(2)، صص 394-373.‎
An, Y., Liu, S., Sun, Y., Shi, F., & Beazley, R. (2020). Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory. Landscape Ecology, 1-18.
Ashoori, A. (2009). Endangered and protected birds of Gilan province. Iran. Katibeh Gil.
Ashoori, A., Kafash, A., Varasteh Moradi, H., Yousefi, M., Kamyab, H., Behdarvand, N., & Mohammadi, S. (2018). Habitat modeling of the common pheasant Phasianus colchicus (Galliformes: Phasianidae) in a highly modified landscape: application of species distribution models in the study of a poorly documented bird in Iran. The European Zoological Journal, 85(1), 372-380.
Baranyi, G., Saura, S., Podani, J., & Jordán, F. (2011). Contribution of habitat patches to network connectivity: redundancy and uniqueness of topological indices. Ecol. Indic. 11 (5), 1301–1310.
Bennett, A.F., Radford, J. Q., & Haslem, A. (2006). Properties of land mosaics: implication for nature conservation in agricultural environmets. Bio Conserve, 133, 250- 264.
Bodin, Ö., & Saura, S. (2010). Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments. Ecological Model, 221, 2393–2405.
Bunn, A.G., Urban, D.L., & Keitt, T.H. (2000). Landscape connectivity: A conservation application of graph theory. Environ. Manag, 59, 265–278.
Chetkiewicz, C.L.B., & Boyce, M.S. (2009). Use of resource selection functions to identify conservation corridors. Appl. Ecol, 46, 1036–1047.
Chi, Y., Xie, Z., & Wang, J. (2019). Establishing archipelagic landscape ecological network with full connectivity at dual spatial scales. Ecological Modelling, 399, 54-65.
Cook, E.A. (2002). Landscape structure indices for assessing urban ecological networks. Landsc. Urban Plan. 58, 269–280.
Cui, N., Feng, C. C., Wang, D., Li, J., & Guo, L. (2018). The effects of rapid urbanization on forest landscape connectivity in Zhuhai City, China. Sustainability, 10, 3381.
Dai, L., Liu, Y., & Luo, X. (2021). Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Science of The Total Environment, 754, 141868.
Dos Santos, A.R., Araújo, E.F., Barros, Q.S., Fernandes, M.M., de Moura Fernandes, M.R., Moreira, T.R., & de AlmeidaTelles, L.A. (2020). Fuzzy concept applied in determining potential forest fragments for deployment of a network of ecological corridors in the Brazilian Atlantic Forest. Ecol. Indic, 115, 106423.
Bio-Economy Unit. (2021). Mspa guide. European commission. https://ies-ows.jrc.ec. europa.eu/gtb/ GTB/ MSPA_Guide.pdf. Accessed 17 June 2021.
Etherington, T. R. (2016). Least-cost modelling and landscape ecology: concepts, applications, and opportunities. Current Landscape Ecology Reports, 1(1), 40-53.
Fagan, W., Cantrell, R., Cosner, C. (1999). How habitat edges change species interaction. Am Nat, 153(2), 165-182.
Foltête, J. C., Girardet, X., & Clauzel, C. (2014). A methodological framework for the use of landscape graphs in land-use planning. Landscape and Urban Planning, 124, 140-150.
Frazier, A. E., Bryan, B. A., Buyantuev, A., Chen, L., Echeverria, C., Jia, P., Liu, L., Li, Q., Ouyang, Z., Wu, J., Xiang, W. N., Yang, J., Yang, L & Zhao, S. (2019). Ecological civilization: perspectives from landscape ecology and landscape sustainability science. Landscape ecology, 34, 1-8.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27.
Guo, S., Saito, K., Yin, W., & Su, C. (2018). Landscape connectivity as a tool in green space evaluation and optimization of the haidan district, Beijing. Sustainability, 10(6), 1979.
Kong, F., Yin, H., Nakagoshi, N., & Zong, Y. (2010).Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan, 95, 16–27.
Kumar, L., & Mutanga, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10), 1509.
Lawton, J.H., Brotherton, P.N.M., Brown, V.K., Elphick, C., Fitter, A.H., Forshaw, J., Haddow, R.W., Hilborne, S., Leafe, R.N., Mace, G.M., Southgate, M.P., Sutherland, W.J., Tew, T.E., Varley, J., & Wynne, G.R.D. (2010). Making space for nature: a review of England’s wildlife sites and ecological network. Report to Defra
Li, H. Q., Lian, Z. M., & Chen, C. G. (2009). Winter foraging habitat selection of brown-eared pheasant (Crossoptilon mantchuricum) and the common pheasant (Phasianus colchicus) in Huanglong Mountains, Shaanxi Province. Acta Ecologica Sinica, 29(6), 335-340.
Liu, X., Hu, G., Chen, Y., Li, X., Xu, X., Li, S., Pei, F., & Wang, S. (2018). High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote sensing of environment, 209, 227-239.
Loveridge, A., Hemson, G., Davidson, Z., & Macdonald, D. (2010). African lions on the edge: Reserve boundaries as ‘‘attractive sinks’’. Biol Conserv Wild Felids, 283, 283–304.
Meriggi, A., Pandini, W., & Cesaris, C. (1996). Demography of the pheasant in relation to habitat characteristics in northern Italy. Wildlife Research, 1, 15–23.
Nelli, L., Meriggi, A., & Vidus-Rosin, A. (2012). Effects of habitat improvement actions (HIAs) and reforestations on pheasants Phasianus colchicus in northern Italy. Wildlife Biology, 18, 121–130.
Nohegar, A., Amiri, C.H.B., & Afrakhteh, R. (2015). Land use analysis on Gilan central district using landscape ecology approach. Geography and Territorial Spatial Arrangement, 15, 197–214.
Opdam, P., Steingrover, E., & van Rooij, S. (2006). Ecological networks: a spatial concept for multi-actor planning of sustainable landscapes. Landsc Urban Plan, 75, 322–332.
Paton, P. (1994). The effect of edge on avian nest success: how strong is the evidence?. Conserv Biol, 8(1), 17–26.
Phan, T.N., Kuch, V & Lehnert, L. W. (2020). Land cover classification using google earth engine and random forest classifier—the role of image composition. Remote Sensing, 12, 2411.
Pirnat, J., & Hladnik, D. (2016). Connectivity as a tool in the prioritization and protection of sub-urban forest patches in landscape conservation planning. Landsc. Urban Plan, 153, 129–139.
Qi, K., Fan, Z., Ng, C.N., Wang, X., & Xie, Y. (2017). Functional analysis of landscape connectivity at the landscape, component, and patch levels: A case study of Minqing County, Fuzhou City, China. Appl. Geogr, 80, 64–77.
Robertson, P. (1997). A Natural History of the Pheasant. Shrewsbury. Swan Hill Press.
Saura, S., & Pascual-Hortal, L. (2007). A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc Urban Plann, 83(2), 91–103.
Saura, S., Estreguil, C., Mouton, C. & Rodríguez-Freire, M. (2011). Network analysis to assess landscape connectivity trends: application to European forests (1990-2000). Ecological Indicators, 11, 407-416.
Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring google earth engine platform for big data processing: classification of multi-temporal satellite imagery for crop mapping. Frontiers in Earth Science, 5, 1-10.
Shi, X., & Qin, M. (2018). Research on the optimization of region green infrastructure network. Sustainability, 10(12), 1-13.
Soille, P., & Vogt, P. (2009). Morphological segmentation of binary patterns. Pattern Recognition Letters, 30, 456–459.
Taylor, P. D. (2006). Landscape connectivity: a return to the basics. Connectivity conservation, 29-43.
Upland habitat basics. (2021). Essential habitat components for pheasants. https://www.pheasantsforever. org/Habitat/Pheasant-Facts/Upland-Cover-Basics.aspx Accessed 22 April 2021.
Venter, Z. S., Aunan, K., Chowdhury, S., & Lelieveld, J. (2020). COVID-19 lockdowns cause global air pollution declines with implications for public health risk. medRxiv.
Worboys, G.L., Francis, W.L., & Lockwood, M. (Eds.). (2010). Connectivity conservation management: a global guide. Earthscan.
Xiao, L., Cui, L., Jiang, Q.O., Wang, M., Xu, L., & Yan, H. (2020). Spatial Structure of a Potential Ecological Network in Nanping, China, Based on Ecosystem Service Functions. Land, 9(10), 376- 394.
Xiong, J., Thenkabail, P. S., Gumma, M. K., Teluguntla, P., Poehnelt, J., Congalton, R. G., Yadav, K & Thau, D. (2017). Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. Photogrammetry and Remote Sensing, 126, 225-244.
Yang, H., Chen, W., & Chen, X. (2017). Regional Ecological Network Planning for Biodiversity Conservation: A Case Study of China's Poyang Lake Eco-Economic Region. Environmental Studies, 26(4), 1825-1833.
Ye, H., Yang, Z., & Xu, X. (2020). Ecological Corridors Analysis Based on MSPA and MCR Model—A Case Study of the Tomur World Natural Heritage Region. Sustainability, 12(3), 959.
Zhao, S. M., Ma, Y. F., Wang, J. L., & You, X. Y. (2019). Landscape pattern analysis and ecological network planning of Tianjin City. Urban Forestry & Urban Greening, 46, 126479.
Zhou, Z.X., & Li, J. (2015). The correlation analysis on the landscape pattern index and and hydrological processes in the Yanhe watershed, China. Hydrology, 524, 417- 426.