شرکت آب منطقهای استان کرمان. 1389. «گزارش سالیانۀ آماری شرکت سهامی آب منطقهای کرمان»، کرمان: شرکت سهامی آب منطقهای، تعداد صفحات: 55.
Engeland, K., and Hisdal, H. 2009. A comparison of low flow estimates in ungauged catchments using regional regression and the HBV model. Journal of Water Resource Manage. 23: pp. 2567–2586
Eslamian, S., Ghasemizadeh, M., Biabanaki, M., and Talebizadeh, M. 2010. A principal component regression method for estimating low flow index. Journal of Water Resource Manage. 24: pp. 2553–2566
Kumar, A.P.S., Sudheer, K. P., Jain, S.K., and Agarwal., P. K. 2005. Rainfall runoff modeling using artificial neural networks comparison of network types. Journal of Hydrological Processes. 19: pp. 1277–1291
Kisi, O. 2008. River flow forecasting and estimation using different neural network techniques. Journal of Hydrological Processes. 39: pp. 27–40
Mukerji, A., Chatterjee, C., and Raghuwanshi, N. 2009. Flood forecasting using ANN, neuro-fuzzy, and neuro-GA Models.
Journal of Hydrologic Engineering. 14: pp. 647–652
Mutlu, E., Chaubey, I., Hexmoor, H., and Bajwa, S.G. 2008. Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Journal of Hydrological Processes. 22: pp. 5097–5106
Nayak, P. C., Sudheer, K. P., Rangan, D. M ., and Ramasastri, K. S. 2005. Short-term flood forecasting with a neurofuzzy model. Journal of Water Resources Research. 41: 2005.
Nourani, V., Komasi, M., and Mano, A. 2009. A multivariate ANN-wavelet approach for rainfall–runoff modeling. Journal of Water Resour Manage. 23: pp. 2877-2894
Pawlak, Z. 1982. Rough sets. International Journal of Computer and Information Sciences. 11: pp. 341-356
Rezaeianzadeh, M., Tabari, H., Arabi Yazdi, A., Isik, S., and Kalin., L. 2013. Flood flow forecasting using ANN, ANFIS and regression models.
Journal of Neural Computing and Applications. 25: pp. 25-37
Rezaeian Zadeh, M., Amin, S., Khalili D., and Singh, V. P. 2010. Daily outflow prediction by multi-layer perceptron with logistic sigmoid and tangent sigmoid activation functions. Journal of Water Resour Manag. 24: pp. 2673–2688
Rodríguez-Rincón, J. P., Breña-Naranjo, J. A., and Pedrozo-Acuña, A. 2014. Uncertainty propagation in a hydro-meteorological approach: from the cloud to the flood map. conference: hic 2014–11th. international conference on hydroinformatics, at new york, usa august. 11: pp. 7977-8011
Shamseldin, A.Y. 2010. Artificial neural network model for river flow forecasting in a developing country.
Journal of Hydroinformatics. 12: pp. 22–35
Stromberg, D. 2007. Natural disasters, economic development, and humanitarian aid. Journal of Economic Perspectives. 21: pp. 199–222
Sahay, R. R., and Sehgal., V. 2013. Wavelet regression models for predicting flood stages in rivers: a case study in Eastern India. Journal of Flood Risk Manag. 6: pp. 146-155
Sahay, R. R., and Srivastava, A. 2014. Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network. Journal of Water Resour Manage. 28: pp. 301-317
Tiwari, M. K., Song, K.Y., Chatterjee, C., and Gupta, M. M. 2013. Improving reliability of river flow forecasting using neural networks, wavelets and self-organizing maps
Journal of Hydrologic Engineering. 15: pp. 486-502
Talei, A., Chua, L., Quek, C., and Jansson, P. 2013. Runoff forecasting using a Takagi–Sugeno neuro-fuzzy model with online learning. Journal of Hydrology. 488: pp. 17-32
Yeh, J., and Yang, R. 2014. Application of the Adaptive Neuro-Fuzzy Inference System for Optimal Design of Reinforced Concrete Beams. Journal of Intelligent Learning Systems and Applications. 6: pp. 162-175