بررسی الگوی قطبی آلودگی هوا بر اساس عوامل هواشناختی در نوار ساحلی استان مازندران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

آلودگی هوا یکی از مهم‌ترین مسائل زیست‌محیطی است. زیرا قرار گرفتن در معرض آلاینده‌های هوا به طور گسترده با مشکلات سلامتی مرتبط است. این مطالعه با هدف بررسی الگوی قطبی آلودگی هوا بر اساس عوامل هواشناختی در نوار ساحلی استان مازندران صورت گرفت. از داده‌ها‌ی غلظت SO2، CO، NO2، O3 سنجنده TROPOMI و متغیرهای هواشناسی (سرعت و جهت باد) در دوره 2022-2018 بهره گرفته شد. نمودارهای سری زمانی، گلباد، گلغبار و قطبی دو متغیره برای تجزیه و تحلیل داده‌ها و شناسایی منابع انتشار استفاده شد. بررسی الگوی تغییرات زمانی نشان داد در اکثر ایستگاه‌ها‌ بیشترین مقدار SO2، CO و NO2 مربوط به سال 2021 و O3 مربوط به سال 2019 است. نتایج بررسی در مقیاس سالانه گلباد و گلغبار نشان داد جهت باد غالب غلظت آلاینده‌ها‌ در ایستگاه امیرآباد و بابلسر هم جهت سرعت باد است، درحالی‌که ایستگاه رامسر و نوشهر جهت سرعت باد با جهت غلظت آلاینده‌ها‌ متفاوت است. اما الگوی قطبی موجود در گلباد و گلغبار دو متغیره فصلی نشان داد جهت سرعت باد و آلاینده با هم متفاوت است به‌طوری‌که بیشترین مقدار غلظت هر یک از آلاینده‌ها‌ در سرعت باد پایین اتفاق افتاده است. همچنین نتایج نشان داد مناطقی که در شرق نوار ساحلی مازندران هستند به دلیل شرایط آب و هوایی، صنایع بیشتر، تردد وسایل نقلیه، نیروگاه شهید سلیمی، تالاب میانکاله و سوزاندن بقایای گیاهی دارای آلودگی هوای بیشتری نسبت به غرب منطقه مورد مطالعه هستند. لذا ارائه تحلیل بصری قطبی جهت مدیریت آلودگی بسیار کارآمد خواهد بود.

کلیدواژه‌ها

موضوعات


Agustine, I., Yulinawati, H., Suswantoro, E., & Gunawan, D. (2017). Application of open air model (R Package) to analyze air pollution data. Indonesian Journal of Urban and Environmental Technology, 1(1), 94–109. https://doi.org/10.25105/urbanenvirotech.v1i1.2430     
Al-Harbi, M., Al-Majed, A., & Abahussain, A. (2020). Spatiotemporal variations and source apportionment of NO x, SO2, and O3 emissions around heavily industrial locality. Environmental Engineering Research, 25(2), 147-162.
Ali-Taleshi, M. S., Moeinaddini, M., Bakhtiari, A. R., Feiznia, S., Squizzato, S., & Bourliva, A. (2021). A one-year monitoring of spatiotemporal variations of PM2.5-bound PAHs in Tehran, Iran: source apportionment, local and regional sources origins and source-specific cancer risk assessment. Environmental Pollution, 274, 115883. https://doi.org/10.1016/j.envpol.2020.115883.
Althuwaynee, O. F., Balogun, A. L., & Al Madhoun, W. (2020). Air pollution hazard assessment using decision tree algorithms and bivariate probability cluster polar function: Evaluating inter-correlation clusters of PM 10 and other air pollutants. Giscience & Remote Sensing, 57(2), 207–226. https://doi. org/10.1080/15481603. 2020. 1712064
Bidokhti, A., & Shariepour, Z. (2010). Meteorological conditions of acute air pollution episodes for Tehran. Journal of Environmental Studies, 35(52), 1-14. (InPersian).
Carslaw, D. C., & Ropkins, K. (2012). Openair—an R package for air quality data analysis. Environmental Modelling & Software, 27–28, 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008
Carslaw, D.C. (2021). Package “openair”. Tools for the Analysis of Air Pollution Data. Retrieved October 2, 2021, from https://cran.r-project.org/web/packages/openair/openair.pdf
De Simone, F., Gencarelli, C. N., Hedgecock, I. M., & Pirrone, N. (2014). Global atmospheric cycle of mercury: A model study on the impact of oxidation mechanisms. Environmental Science and Pollution Research, 21(6), 4110–4123. https://doi.org/10.1007/s11356-013-2451-x
Demirarslan, K. O., & Zeybek, M. (2021). Conventional air pollutant source determination using bivariate polar plot in Black Sea, Turkey. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01553-3
Demirarslan, K. O., & Zeybek, M. (2022). Conventional air pollutant source determination using bivariate polar plot in Black Sea, Turkey. Environment, Development and Sustainability, 24(2), 2736-2766.
Espinoza-Guillen, J. A., Alderete-Malpartida, M. B., Cañari-Cancho, J. H., Pando-Huerta, D. L., Vargas-La Rosa, D. F., & Bernabé-Meza, S. J. (2023). Immission levels and identification of sulfur dioxide sources in La Oroya city, Peruvian Andes. Environment, Development and Sustainability, 25(11), 12843-12872.
Eunhwa, J., Woogon, D., Geehyeong, P., Minkyeong, K., & Eunchul, Y. (2016). Spatial and temporal variation of urban air pollutants and their concentrations in relation to meteorological conditions at four sites in Busan, South Korea. Atmospheric Pollution Research, 8, 89–100. https://doi.org/10.1016/j.apr.2016.07.009
Ghanbari, N. Shujaei, S. Ashrafipour, R. (2006). Investigating the state of air pollution in Mazandaran province and predicting the worsening of its environmental effects in the future (pp. 1-15). the first specialized conference on environmental engineering, Tehran. (InPersian).
Ghorbani, M., Mahmoodi, A., Shokat Fadaee, M., & Khaledi, M. (2021). Investigating the Relationship between Air Pollutants and Meteorological Parameters in the Agricultural Sector of Mazandaran Province Using Logistic Regression. Geography and Environmental Sustainability, 10(4), 17-37, DOI: https://doi.org/10.22126/ges.2021. 5677.2285. (InPersian).
Grange, S. K., Lewis, A. C., & Carslaw, D. C. (2016). Source apportionment advances using polar plots of bivariate correlation and regression statistics. Atmospheric Environment, 145, 128-134.
Hama, S. M., Kumar, P., Harrison, R. M., Bloss, W. J., Khare, M., Mishra, S., Namdeo, A., Sokhi, R., Goodman, P., & Sharma, C. (2020). Four-year assessment of ambient particulate matter and trace gases in the Delhi-NCR region of India. Sustainable Cities and Society, 54, 102003. https://doi.org/10.1016/j.scs.2019.102003
Hopke, P. K. (2016). Review of receptor modeling methods for source apportionment. Journal of the Air & Waste Management Association, 66(3), 237–259. https://doi.org/10.1080/10962247.2016.1140693
Hui, L., Ma, T., Gao, Z., Gao, J., Wang, Z., Xue, L., Liu, H., & Liu, J. (2021). Characteristics and sources of volatile organic compounds during high ozone episodes: A case study at a site in the eastern Guanzhong Plain. China Chemosphere, 265, 129072. https://doi.org/10.1016/j.chemosphere.2020.129072
Jandacka, D., Durcanska, D., Nicolanska, M., & Holubcik, M. (2024). Impact of Seasonal Heating on PM10 and PM2. 5 Concentrations in Sučany, Slovakia: A Temporal and Spatial Analysis. Fire, 7(4), 150.
Jorquera, H., & Villalobos, A. M. (2020). Combining cluster analysis of air pollution and meteorological data with receptor model results for ambient PM2.5 and PM10. International Journal of Environmental Research and Public Health, 17(22), 8455
Khan, M. B., Masiol, M., Formenton, G., Di Gilio, A., de Gennaro, G., Agostinelli, C., & Pavoni, B. (2016). Carbonaceous PM2.5 and secondary organic aerosol across the Veneto region (NE Italy). Science of the Total Environment, 542, 172–181. https://doi.org/10.1016/j.scitotenv.2015.10.103
Khebri, Z., Danehkar, A., Nejadkoorki, F., & Sadeghian, F. (2024). Exploring Air Quality and Industrial Pollution Sources in Bandar Abbas City: A Three-Year Analysis (2020-2023). Journal of Natural Environment. (InPersian).
Lai, T. L. (2011). Occurrence of major ozone episodes and their time-series trends over the past decade in New England.
Lang, J., Zhou, Y., Cheng, S., Zhang, Y., Dong, M., Li, S., Wang, G., & Zhang, Y. (2016). Unregulated pollutant emissions from on-road vehicles in China, 1999–2014. Science of the Total Environment, 573, 974–984. https://doi.org/10.1016/j.scitotenv.2016.08.171
Lee, M., Brauer, M., Wong, P., Tang, R., Tsui, T. H., Choi, C., ... & Barratt, B. (2017). Land use regression modelling of air pollution in high density high rise cities: A case study in Hong Kong. Science of the Total Environment, 592, 306-315.
Loyola, D. G., Gimeno García, S., Lutz, R., Argyrouli, A., Romahn, F., Spurr, R. J., & Schüssler, O. (2018). The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor. Atmospheric Measurement Techniques, 11(1), 409-427, DOI: https://doi.org/10.5194/amt-11-409-2018
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: a review. Frontiers in public health, 8, 505570.
Mansurian, Z., & Nejadkoorki, F. (2023). Analysis of the sensitivity of air pollution emissions of a steel factory to the prevailing wind direction. Human & Environment, 21(2), 31-53. (InPersian).
Mao, H., & Talbot, R. (2004). Relationship of surface O3 to large‐scale circulation patterns during two recent winters. Geophysical research letters, 31(6).
Nguyen, T. N. T., Vuong, Q. T., Lee, S. J., Xiao, H., & Choi, S. D. (2022). Identification of source areas of polycyclic aromatic hydrocarbons in Ulsan, South Korea, using hybrid receptor models and the conditional bivariate
 
 
 
probability function. Environmental Science: Processes & Impacts, 24, 140–151. https://doi.org/10.1039/ D1EM00320H
Prabhu, V., Soni, A., Madhwal, S., Gupta, A., Sundriyal, S., Shridhar, V., Sreekanth, V., & Mahapatra, P. S. (2020). Black carbon and biomass burning associated high pollution episodes observed at Doon valley in the foothills of the Himalayas. Atmospheric Research, 243, 105001. https://doi.org/10.1016/j.atmosres.2020.105001
Rojano, R. E., Arregoces, H. A., Angulo, L. C., & Restrepo, G. M. (2018). Análisis y Origen de las Concentraciones de TSP y PM10 en Minería de Carbón a Cielo Abierto usando Gráficos Polares. Información Tecnológica, 29(6), 131–142. https://doi.org/10.4067/S0718-07642018000600131
Safarrad, T., & Yousefi, Y. (2022). Investigation of Air Pollution in Tehran According Wind and Precipitation Conditions. Journal of Environmental Studies, 48(3), 387-402. (InPersian).
Saw, G. K., Dey, S., Kaushal, H., & Lal, K. (2021). Tracking NO2 emission from thermal power plants in North India using TROPOMI data. Atmospheric Environment, 259, 118514, DOI: https://doi.org/10.1016/ j.atmosenv. 2021.118514
Sheng, N., & Tang, U. W. (2013). Risk assessment of traffic-related air pollution in a world heritage city. International Journal of Environmental Science and Technology, 10, 11-18.
Sheng, N., & Tang, U. W. (2013). Risk assessment of traffic-related air pollution in a world heritage city. International Journal of Environmental Science and Technology, 10, 11-18.
Sung, L. Y., Shie, R. H., & Lu, C. J. (2014). Locating sources of hazardous gas emissions using dual pollution rose plots and open path Fourier transform infrared spectroscopy. Journal of hazardous materials, 265, 30-40.
Temiz, C. (2024). Analyzing Air Pollution Trends in Eastern Türkiye Over the Last Decade Using a Multivariate Statistical Approach. https://doi.org/10.21203/rs.3.rs-3987349/v1
Tsai, C. W., & Chen, C. K. (2024). River dust-induced air pollution in a changing climate: A study of Taiwan's Choshui and Kaoping Rivers. Environmental Pollution, 360, 124398.
Tudor, C. (2022). Ozone pollution in London and Edinburgh: spatiotemporal characteristics, trends, transport and the impact of COVID-19 control measures. Heliyon, 8(11).
Uria-Tellaetxe, I., & Carslaw, D. C. (2014). Conditional bivariate probability function for source identification. Environmental Modelling & Software, 59, 1–9. https://doi.org/10.1016/j.envsoft.2014.05.002
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., De Vries, J., Otter, G., ... & Levelt, P. F. (2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote sensing of environment, 120, 70-83, DOI: https://doi.org/10.1016/j.rse.2011.09.027
Wei, C., Wang, M. H., Fu, Q. Y., Dai, C., Huang, R., & Bao, Q. (2020). Temporal characteristics and potential sources of black carbon in megacity Shanghai, China. Journal of Geophysical Research: Atmospheres, 125(9), e2019JD031827. https://doi.org/10.1029/2019JD031827
World Health Organization (WHO). (2021). WHO Global Guidelines on Air Quality: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. World Health Organization. Retrieved October 13, 2021, from https://apps.who.int/iris/handle/10665/345329
Xiong, J., Li, J., Gao, F., & Zhang, Y. (2023). City wind impact on air pollution control for urban planning with different time-scale considerations: A case study in Chengdu, China. Atmosphere, 14(7), 1068.
Yan, L., Hu, W., & Yin, M. Q. (2021). An Investigation of the Correlation between Pollutant Dispersion and Wind Environment: Evaluation of Static Wind Speed. Polish Journal of Environmental Studies, 30(5).
Yang, J., Shi, B., Shi, Y., Marvin, S., Zheng, Y., & Xia, G. (2020). Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustainable Cities and Society, 54, 101941.
Yang, X., Wang, S., Zhang, W., Zhan, D., & Li, J. (2016). The impact of anthropogenic emissions and meteorological conditions on the spatial variation of ambient SO2 concentrations: A panel study of 113 Chinese cities. Science of the Total Environment, 584–585, 318–328. https://doi.org/10.1016/j.scitotenv.2016.12.145
Yeganeh, B., Khuzestani, R. B., Taheri, A., & Schauer, J. J. (2021). Temporal trends in the spatial-scale contributions to black carbon in a Middle Eastern megacity. Science of the Total Environment. https://doi.org/10.1016/j. scitotenv.2021.148364
Yousefi-Kabria, A., & Nadi, M. (2022). spatio-temporal analysis of air pollution in Mazandaran province using remote sensing. 3rd National Conference on Environemental Changes (Coastal Water Resources Management). https://civilica.com/doc/1927265. (InPersian).