Abd El-Ghani, M., Soliman, A., & Abd El-Fattahr, A. (2014). Spatial distribution and soil characteristics of the vegetation associated with common succulent plants in Egypt. Turkish Journal of Botany, 38, 550-565. doi: 10.3906/bot-1309-49.
Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS).
Journal of Applied Ecology,
43(6), 1223-1232. doi:
10.1111/j.1365-2664.2006.01214.x.
Amiri, M., Tarkesh, M., & Jafari, R. (2019). Predicting the distribution of
Artemisia sieberi Besser under climate change in steppe and semi-steppe of Iran-Touranian region.
Desert Management,
13, 29-48. doi:
10.22034/JDMAL.2019.36534. (In Persian)
Ansari, S., Dehban, H., Zareian, M. J., & Farokhnia, A. (2022). Investigation of temperature and precipitation changes in the Iran’s basins in the next 20 years based on the output of CMIP6 model.
Iranian Water Research Journal,
16(1), 11-24. doi:
10.22034/IWRJ.2022.11204. (In Persian)
Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions.
Trends in Ecology and Evolution,
22, 42-47. doi:
10.1016/j.tree.2006.09.010.
Ardakani, M. R. (2014). Ecology. University of Tehran Press. (In Persian)
Braunisch, V., Coppes, J., Arlettaz, R., Suchant, R., Schmid, H., & Bollmann, K. (2013). Selecting from correlated climate variables: A major source of uncertainty for predicting species distributions under climate change. Ecography, 36(9): 971-983. doi: 10.1111/j.1600-0587.2013.00138.x.
Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range‐shifting species.
Methods in ecology and evolution,
1, 330-342. doi:
10.1111/j.2041-210X.2010.00036.x.
Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F. T., Moore, B., Pedersen, T., Rosenthal, Y., Smetacek, V., & Stefen, W. (2000). The global carbon cycle: a test of our knowledge of earth as a system.
Science,
290(5490), 291-296. doi:
10.1126/science.290.5490.291.
Fallah Kalaki, M., Shokri Kuchak, V., & Ramezani Etedali, H. (2021). Simulating the effects of climate change on runoff using the CMIP5 and CMIP6 climate models by SWAT hydrological model (case study: Tashk-Bakhtegan basin). Iran-water Resource Research, 17(3), 345-359. (In Persian)
Fatemi Azarkhavarani, S. S., Rahimi, M., Tarkesh, M., & Ravanbakhsh, H. (2017). Prediction of Juniperus excelsa M. Bieb. geographical distribution using by climate data under the conditions of current and future in Semnan Province. Iranian Journal of Forest, 9(2), 233-248. (In Persian)
Franklin, J. (2010).
Mapping species distributions: spatial inference and prediction. Cambridge University Press. doi:
10.1017/CBO9780511810602.
Gebrewahid, Y., Abrehe, S., Meresa, E., Eyasu, G., Abay, K., Gebreab, G., Kidanemariam, K., Adissu, G., Abreha, G. & Darcha, G. (2020). Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecological Processes, 9, 1-15. doi: 10.1186/s13717-019-0210-8.
Ghashangzadeh, A., & Fotouhi, F. (2021, November 24-25). Effect of precipitation fluctuations to climate change on crop production and water constraint management in Iran. 10th international conference on rainwater catchment systems. University of Kurdistan. https://civilica.com/doc/1411106 (In Persian)
Hill, L., Hector, A., Hemery, G., Smart, S., Tanadini, M., & Brown, N. (2017). Abundance distributions for tree species in Great Britain: A two‐stage approach to modeling abundance using species distribution modeling and random forest.
Ecology and Evolution,
7, 1043-1056. doi:
10.1002/ece3.2661.
Hosseini, S. S., Tavili, A., Naghipoor Borj, A. A., & Khalighi Sigaroodi, S. (2022). Potential effects of climate change on the geographic distribution of the Hordeum bulbosum L. in the central Zagros region. Natural Environment, 74(4), 747-758. (In Persian)
IPCC. (2021). Summary for policymakers Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
Iverson, L. R., & McKenzie, D. (2013). Tree-species range shifts in a changing climate: detecting, modeling and assisting. Landscape Ecology, 28, 879-889. doi: 10.1007/s10980-013-9885-x.
Jafarian, Z., Karimzadeh, A., Ghorbani, J., & Akbarzadeh, A. (2011). Determination of ecological species groups and effective environmental factors on them. Environmental Studies, 59, 77-88. (In Persian)
Merow, C., Smith, M. J., & Silander, S. J. (2013). A practical guide to Maxent for modeling species’ distributions: What it does, and why inputs and settings matter.
Ecography,
36(10), 1058-1069. doi:
10.1111/j.1600-0587.2013.07872.x.
Motamedi, J., Khodagholi, M., & Khalifezadeh, R. (2022). Prediction of current and future potential range of Artemisia aucheri under two climate warning models (Rcp4.5 and Rcp8.5) in southern Alborz rangeland habitats, Qazvin province. Environmental Sciences Studies, 7(2), 5015-5023. doi: 10.22034/JESS.2022.331331.1732. (In Persian)
Nazari, S., Jafarian, Z., Alavi, S. J., & Naghipoor Borj, A. A. (2022). Predicting the geographical distribution of Alopecurus textilis Boiss rangeland species on basis consensus approach of climate change in Mazandaran province. Plant Ecosystem Conservation, 9(19), 137-155. (In Persian)
ÓNeill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingtein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J. F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The scenario model intercomparison project (Scenario MIP) for CMIP6. Geoscientific Model Development, 9(9), 3461-3482. doi: 10.5194/gmd-9-3461-2016.
Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?
Global Ecology and Biogeography,
12, 361-371. doi:
10.1046/j.1466-822X.2003.00042.x.
Qahraman, A. (1988). Flora of Iran. Volume 11. Research Institute of Forests and Rangelands. (In Persian)
Rana, S. K., Rana, H. K., Ghimire, S. K., Shrestha, K. K., & Ranjitkar, S. (2017). Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Mountain Science, 14(3), 558-570. doi: 10.1007/s11629-015-3822-1.
Santos, B. A., Barbosa, D. C. A., & Tabarelli, M. (2007). Directional changes in plant assemblages along an altitudinal gradient in northeast Brazil. Brazilian Journal of Biology, 67(4), 777-779. doi: 10.1590/S1519-69842007000400028.
Sheikhzadeh Ghahnaviyeh, A., Tarkesh Esfahani, M., Bashari, H., & Soltani Koupaei, S. (2021). Investigating geographical shifts of Astragalus verus under climate change scenarios using random-forest modeling (Case study: Isfahan and Chaharmahal va Bakhtiari provinces). Journal of Rangeland, 15(4), 589-602. (In Persian)
Stohlgren, T. J., Ma, P., Kumar, S., Rocca, M., Morisette, J. T., Jarnevich, C., & Benson, N. (2010). Ensemble habitat mapping of invasive plant species.
Risk Analysis,
30(2), 224-235. doi:
10.1111/j.1539-6924.2009.01343.x.
Taylor, M. A., Stephenson, T. S., Anthony Chen, A., & Stephenson, K. A. (2012). Climate change and the caribbean: Review and response. Caribbean Studies, 40(2), 169-200.
Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M. D., & Thuiller, C. W. (2016). Package ‘biomod2’. 114 p.
Tsoar, A., Ahhouche, O., Steinitz, O., Rotem, D., & Kadmon, R. (2007). A comparative evaluation of presence-only methods for modeling species distribution.
Diversity and Distributions,
13(4), 397-405. doi:
10.1111/j.1472-4642.2007.00346.x.
Uğurlu, E., & Oldeland, J. (2012). Species response curves of oak species along climatic gradients in Turkey.
International Journal of Biometeorology, 56(1), 85-93. doi:
10.1007/s00484-010-0399-9.
Zarrin, A., Dadashi-Roudbari, A. A., & Salehabadi, N. (2021). Projected temperature anomalies and trends in different climate zones in Iran based on CMIP6.
Journal of Geophysics,
15(1), 35-54. doi:
10.22059/ JPHGR.2021. 308361. 1007551. (In Persian)
Zhang, J., Huang, S., & He, F. (2015). Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate.
Proceedings of the National Academy of Sciences,
112(13), 4009-4014. doi:
10.1073/pnas.1420844112.