Ahmed, W., Lu, G., Ng, S. T., & Liu, G. (2025). Innovative valorization of solid waste materials for production of sustainable low-carbon pavement: A systematic review and scientometric analysis.
Case Studies in Construction Materials,
22, e04541.
https://doi.org/https://doi.org/10.1016/j.cscm.2025.e04541
Azarakhsh brick industrt group.(2021).digital product catalog. Retrieved November 2021.from https://www.azarakhsh.ir
Cabeza, L. F., Barreneche, C., Miró, L., Morera, J. M., Bartolí, E., & Inés Fernández, A. (2013). Low carbon and low embodied energy materials in buildings: A review.
Renewable and Sustainable Energy Reviews,
23, 536-542.
https://doi.org/https://doi.org/10.1016/j.rser.2013.03.017
Chan, M., Masrom, M. A., & Yasin, S. S. (2022). Selection of Low-Carbon Building Materials in Construction Projects: Construction Professionals’ Perspectives.
Buildings,
12(4), 486.
https://doi.org/10.3390/ buildings12040486
Chen, J., Zhou, W., & Yang, H. (2019). Is Embodied Energy a Better Starting Point for Solving Energy Security Issues?—Based on an Overview of Embodied Energy-Related Research. Sustainability, 11(16), 4260.
Chen, L., Huang, L., Hua, J., Chen, Z., Wei, L., Osman, A. I., Fawzy, S., Rooney, D. W., Dong, L., & Yap, P.-S. (2023). Green construction for low-carbon cities: a review. Environmental Chemistry Letters, 21(3), 1627-1657. https://doi.org/10.1007/s10311-022-01544-4
Chen, S., Teng, Y., Zhang, Y., Leung, C. K. Y., & Pan, W. (2023). Reducing embodied carbon in concrete materials: A state-of-the-art review. Resources, Conservation and Recycling, 188, 106653. https://doi.org/https://doi.org/10.1016/j.resconrec.2022.106653
Cheng, S., Zhou, X., & Zhou, H. (2023). Study on Carbon Emission Measurement in Building Materialization Stage. Sustainability, 15(7), 5717.
Chepaitis, P. S., Zhang, Q., Kalafut, D., Waddey, T., Wilson, M. J., & Black, M. (2024). The Effect of Moderate Temperature Rise on Emitted Chemicals from Modern Building Materials. Buildings, 14(11), 3683.
Cui, J., Guo, Y., Xu, Q., Li, D., Chen, W., Shi, L., Ji, G., & Li, L. (2023). Extraction of Information on the Flooding Extent of Agricultural Land in Henan Province Based on Multi-Source Remote Sensing Images and Google Earth Engine. Agronomy, 13(2), 355.
Dighade, R., Gomase, V., Peshattiwar, R., Selokar, A., Sangidwar, N., Peshattiwar, S., & Malve, S. (2024). Emission of carbon footprint from building construction materials: A review. IOP Conference Series: Earth and Environmental Science, 1409, 012010. https://doi.org/10.1088/1755-1315/1409/1/012010
Figueiredo, N. L. B., Figueiredo, F. B., Barboza, C. S., & Reis, D. D. d. (2024). Embodied energy in the life cycle of construction materials: a bibliometric analysis and systematic review.
CONTRIBUCIONES A LAS CIENCIAS SOCIALES,
17(13), e14035.
https://doi.org/10.55905/revconv.17n.13-455
Foda, T., Hassan, H., Abdelkader, A., & el-hassan, K. (2024). Predictive modeling of sustainable recycled materials for stone column construction.
Innovative Infrastructure Solutions,
9.
https://doi.org/10.1007/ s41062-024-01700-5
Jia, G., Guo, J., Guo, Y., Yang, F., & Ma, Z. (2024). CO2 adsorption properties of aerogel and application prospects in low-carbon building materials: A review.
Case Studies in Construction Materials,
20, e03171.
https://doi.org/https://doi.org/10.1016/j.cscm.2024.e03171
Kinnane, O., O'Hegarty, R., & Reilly, A. (2020). Energy embodied in, and transmitted through, walls of different type when accounting for the dynamic effects of thermal mass.
Journal of Green Building,
15, 43-66.
https://doi.org/10.3992/jgb.15.4.43
Li, X., Ren, A., & Li, Q. (2022). Exploring Patterns of Transportation-Related CO2 Emissions Using Machine Learning Methods. Sustainability, 14(8), 4588.
Luo, Z., Cang, Y., Zhang, N., Yang, L., & Liu, J. (2019). A Quantitative Process-Based Inventory Study on Material Embodied Carbon Emissions of Residential, Office, and Commercial Buildings in China.
Journal of Thermal Science,
28.
https://doi.org/10.1007/s11630-019-1165-x
Nama.design.(1399).composite façade design project gallery.retrieved from: https://nama.design/composite-facade-design
Moran, P., Flynn, J., Larkin, C., Goggins, J., & Elkhayat, Y. (2025). Materials and service lives alterations impacts on reducing the whole life embodied carbon of buildings: A case study of a student accommodation development in Ireland.
Case Studies in Construction Materials,
22, e04514.
https://doi.org/https://doi.org/10.1016/j.cscm.2025.e04514
Nasr, M., Shubbar, A., Abed, Z., & Ibrahim, M. (2020). Properties of eco-friendly cement mortar contained recycled materials from different sources.
Journal of Building Engineering,
31, 101444.
https://doi.org/10.1016/j.jobe.2020.101444
Ovam. (2011). Ecolizer 2.0 (Public Flemish Waste Company (OVAM), Issue. https://www.vlaanderen.be/publicaties/ecolizer-20-eng
Videras Rodríguez, M., Gómez Melgar, S., & Andújar Márquez, J. M. (2024). Evaluation of aerial thermography for measuring the thermal transmittance (U-value) of a building façade. Energy and Buildings, 324, 114874. https://doi.org/https://doi.org/10.1016/j.enbuild.2024.114874
Wang, M., Jia, Z., Tao, L., & Xiang, C. (2024). Review of dynamic façade typologies, physical performance and control methods: Towards smarter and cleaner zero-energy buildings. Journal of Building Engineering, 98, 111310. https://doi.org/https://doi.org/10.1016/j.jobe.2024.111310
Wang, Y., & Pan, W. (2023). The contribution of cleaner production in the material industry to reducing embodied energy and emissions in China's building sector. Building and Environment, 242, 110555. https://doi.org/https://doi.org/10.1016/j.buildenv.2023.110555
Watkins, M., Casamayor, J. L., Ramirez, M., Moreno, M., Faludi, J., & Pigosso, D. C. A. (2021). Sustainable Product Design Education: Current Practice. She Ji: The Journal of Design, Economics, and Innovation, 7(4), 611-637. https://doi.org/https://doi.org/10.1016/j.sheji.2021.11.003
Yadav, K., & Mishra, N. (2023). Low-Carbon Building Materials: An Overview of Innovative Alternatives to Traditional Materials. International Journal for Multidisciplinary Research, 5(3), 3934. https://doi.org/10.36948/ijfmr.2023.v05i03.3934
Yu, M., Wiedmann, T., Crawford, R., & Tait, C. (2017). The Carbon Footprint of Australia's Construction Sector. Procedia Engineering, 180, 211-220. https://doi.org/10.1016/j.proeng.2017.04.180
Zheng, X., et al. (2025). Modern Panelizing and Optimization Techniques for Renewable Energy Projects; Perspectives on How CO2 Emissions Impact the Circular Economy. Energy, 323, 135881. https://doi.org/10.1016/j.energy.2025.135881
Zhong, X., Hu, M., Deetman, S., Steubing, B., Lin, H., Aguilar-Hernandez, G., Harpprecht, C., Zhang, C., Tukker, A., & Behrens, P. (2021). Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060.
Nature Communications,
12.
https://doi.org/ 10.1038/ s41467-021-26212-z
Zhu, H., Liou, S.-R., Chen, P.-C., He, X.-Y., & Sui, M.-L. (2024). Carbon Emissions Reduction of a Circular Architectural Practice: A Study on a Reversible Design Pavilion Using Recycled Materials. Sustainability, 16(5), 1729.