Amin, S., Khandaker, M. K., Jannat, J., Khan, F., & Rahman, S. Z. (2023). Cooperative environmental governance in urban South Asia: implications for municipal waste management and waste-to-energy.
Environmental Science and Pollution Research,
30(26), 69550-69563.
https://doi.org/10.1007/s11356-023-27152-5
Adeleke, O., Akinlabi, S. A., Jen, T. C., & Dunmade, I. (2021). Application of artificial neural networks for predicting the physical composition of municipal solid waste: An assessment of the impact of seasonal variation.
Waste Management & Research,
39(8), 1058-1068.
https://doi.org/10.1177/0734242X21991642
Brooks, S., Wang, X., & Sarker, S. (2012). Unpacking green IS: a review of the existing literature and directions for the future.
Green business process management: Towards the sustainable enterprise,
15-37. https://doi.org/10.1007/ 978-3-642-27488-6_2
Cha, G. W., Moon, H. J., Kim, Y. M., Hong, W. H., Hwang, J. H., Park, W. J., & Kim, Y. C. (2020). Development of a prediction model for demolition waste generation using a random forest algorithm based on small datasets.
International Journal of Environmental Research and Public Health,
17(19), 6997.
https://doi.org/10.3390/ ijerph17196997
Cha, G. W., Choi, S. H., Hong, W. H., & Park, C. W. (2023). Developing a prediction model of demolition-waste generation-rate via principal component analysis.
International Journal of Environmental Research and Public Health,
20(4), 3159.
https://doi.org/10.3390/ijerph20043159
del Mar Martínez-Bravo, M., Martínez-del-Río, J., & Antolín-López, R. (2019). Trade-offs among urban sustainability, pollution and livability in European cities.
Journal of cleaner production,
224, 651-660.
https://doi.org/10.1016/ j.jclepro.2019.03.110
Felici-Castell, S., Segura-Garcia, J., Perez-Solano, J. J., Fayos-Jordan, R., Soriano-Asensi, A., & Alcaraz-Calero, J. M. (2023). AI-IoT low-cost pollution-monitoring sensor network to assist citizens with respiratory problems.
Sensors,
23(23), 9585.
https://doi.org/10.3390/s23239585
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error.
Journal of marketing research,
18(1), 39-50.
https://doi.org/10.1177/002224378101800104
Ghahramani, M., Habibi, D., Ghahramani, M., Nazari-Heris, M., & Aziz, A. (2023). Sustainable buildings: a comprehensive review and classification of challenges and issues, benefits, and future directions.
Natural Energy, Lighting, and Ventilation in Sustainable Buildings, 1-28.
https://doi.org/10.1007/978-3-031-41148-9_1
Gupta, R., Nair, K., Mishra, M., Ibrahim, B., & Bhardwaj, S. (2024). Adoption and impacts of generative artificial intelligence: Theoretical underpinnings and research agenda.
International Journal of Information Management Data Insights,
4(1), 100232.
https://doi.org/10.1016/j.jjimei.2024.100232
Jones, S., McCord, G., Mosnier, A., Godfray, C., & Smith, A. (2024). Achieving global biodiversity targets requires shifting food and land use system trajectories.
https://doi.org/10.5281/zenodo.13961228
Lawshe, C. H. (1975). A quantitative approach to content validity.
Personnel psychology,
28(4).
https://doi.org/ 10.1111/j.1744-6570.1975.tb01393.x
Solano Meza, J. K., Orjuela Yepes, D., Rodrigo-Ilarri, J., & Rodrigo-Clavero, M. E. (2023). Comparative analysis of the implementation of support vector machines and long short-term memory artificial neural networks in municipal solid waste management models in megacities. International Journal of Environmental Research and Public Health, 20(5), 4256. https://doi.org/10.3390/ijerph20054256
Waltz, C. F., & Bausell, B. R. (1981). Nursing research: design statistics and computer analysis. Davis Fa. https://doi.org/10.5555/578318
Strubell, E., Ganesh, A., & McCallum, A. (2020).
Energy and policy considerations for modern deep learning research. Proce AAAI Conf Artific Intell 34 (09): 3693–13696.
https://doi.org/10.1609/aaai.v34i09.7123
Zhang, T., Jianming, Y., Wang, W., Chen, P., Chen, C., Wu, Z., ... & Yu, Q. (2024). Efficient utilization of waste shield slurry and CDW fines to prepare eco-friendly controlled low-strength material.
Journal of Cleaner Production,
444, 141343.
https://doi.org/10.1016/j.jclepro.2024.141343