Investigating the reasons for the reduction in dissolved oxygen concentration ‎in the Oman Sea

Document Type : Research Paper

Authors

Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran

Abstract

In this study, the relationship between dissolved oxygen reduction in the Gulf of Oman and changes in effective factors such as temperature and thermal stratification, exchanges with nearby water bodies, biological activities, chlorophyll-a concentration, and primary production was studied. The data used in this research were extracted from the measurement data available on global sites such as the World Ocean Atlas and SeaWiFS and MODIS satellite images. Comparing the average annual DO profiles in the Gulf of Oman showed a decrease in the upper 1000 m layer in 2010 compared to 1960. The DO reduction in the surface mixed layer was 0.4 mg/l and reached 3.7 mg/l at 100 m depth. At depths more than 100 m, the amount of change decreased and reached 0.1 mg/l at 1000 m. Due to the deoxygenation, the thickness of the surface layer with DO˃2 mg/l decreased from 150 m to 80 m. The results demonstrated that the drop in DO in the surface mixed layer was consistent with the decrease in gas solubility caused by the temperature increment in this layer. Regarding the severe reduction of DO in the layer below the surface mixed layer, it was shown that the strengthening of thermal vertical stratification and intensification of thermocline (0.01°C/m increase in thermal gradient) were the most important factors.

Keywords

Main Subjects


Acharya, S. S., & Panigrahi, M. K. (2016). Eastward shift and maintenance of Arabian Sea oxygen minimum zone: Understanding the paradox. Deep Sea Research Part I: Oceanographic Research Papers, 115, 240-252.
Al Gheilani, H. M., Matsuoka, K., AlKindi, A. Y., Amer, S., & Waring, C. (2011). Fish kill incidents and harmful algal blooms in Omani waters. Journal of Agricultural and Marine Sciences [JAMS], 16, 23-33.
Ali, A., Ahmed, S., Kazi, L. I., Tabrez, M., & Amjad, S. (1995). Seasonal variation of mixed layer depth in the north Arabian sea. Pakistan Journal of Marine Sciences, 4(1), 1-4.
Allahdadi, M. N., Jose, F., D'Sa, E. J., & Ko, D. S. (2017). Effect of wind, river discharge, and outer-shelf phenomena on circulation dynamics of the Atchafalaya Bay and shelf. Ocean Engineering, 129, 567-580.
Banse, K., Naqvi, S., Narvekar, P., Postel, J., & Jayakumar, D. (2014). Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal timescales. Biogeosciences, 11(8), 2237-2261.
Bendtsen, J., Gustafsson, K. E., Söderkvist, J., & Hansen, J. L. (2009). Ventilation of bottom water in the North Sea–Baltic Sea transition zone. Journal of Marine Systems, 75(1-2), 138-149.
Bendtsen, J., & Hansen, J. L. (2013). Effects of global warming on hypoxia in the Baltic Sea–North Sea transition zone. Ecological modelling, 264, 17-26.
Bindoff, N. L., Cheung, W. W., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., Hilmi, N. J. M., Jiao, N., Karim, M. S., & Levin, L. (2019). Changing ocean, marine ecosystems, and dependent communities. IPCC special report on the ocean and cryosphere in a changing climate, 477-587.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., & Seferian, R. (2013). Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10(10), 6225-6245.
Bower, A. S., Hunt, H. D., & Price, J. F. (2000). Character and dynamics of the Red Sea and Persian Gulf outflows. Journal of Geophysical Research: Oceans, 105(C3), 6387-6414.
Bower, A. S., Johns, W. E., Fratantoni, D. M., & Peters, H. (2005). Equilibration and circulation of Red Sea Outflow Water in the western Gulf of Aden. Journal of Physical Oceanography.35(11), 1963-1985.
Breitburg, D., Grégoire, M., & Isensee, K. (2018a). Global Ocean Oxygen Network 2018. The ocean is losing its breath: Declining oxygen in the world’s ocean and coastal waters. IOC-UNESCO, IOC Technical Series, 137.
Breitburg, D., Grégoire, M., & Isensee, K. (2018b). The Ocean is lossing its breath: declining oxygen in the global and coastal ocean. IOC-UNESCO, IOC Technical Series, No. 137 40pp.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., & Isensee, K. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359(6371).
Capet, A., & Grégoire, M. (2016). Modelling hypoxia and its impact on marine Good Environmental Status: The Black Sea case. 8th International Workshop on Modeling the Ocean (IWMO).
Coma, R., Ribes, M., Serrano, E., Jiménez, E., Salat, J., & Pascual, J. (2009). Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proceedings of the National Academy of Sciences, 106(15), 6176-6181.
Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926-929.
DiMarco, S. F., Wang, Z., Chapman, P., Al-Kharusi, L., Belabbassi, L., Al-Shaqsi, H., Stoessel, M., Ingle, S., Jochens, A. E., & Howard, M. K. (2023). Monsoon-driven seasonal hypoxia along the northern coast of Oman.
do Rosário Gomes, H., Goes, J. I., Matondkar, S. P., Buskey, E. J., Basu, S., Parab, S., & Thoppil, P. (2014). Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia. Nature communications, 5(1), 1-8.
Du, J., Shen, J., Park, K., Wang, Y. P., & Yu, X. (2018). Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay. Science of The Total Environment, 630, 707-717.
Ekau, W., Auel, H., Pörtner, H.-O., & Gilbert, D. (2009). Impacts of hypoxia on the structure and processes in the pelagic community (zooplankton, macro-invertebrates and fish). Biogeosciences Discussions, 6(3).
Flynn, K. J. (2005). Incorporating plankton respiration in models of aquatic ecosystem function. Respiration in aquatic ecosystems, edited by: del Giorgio, PA and Williams, LeB, PJ, Oxford University Press, 248-266.
Gallo, N., & Levin, L. (2016). Fish ecology and evolution in the world's oxygen minimum zones and implications of ocean deoxygenation. Advances in marine biology, 74, 117-198.
Garcia, H. E., & Gordon, L. I. (1992). Oxygen solubility in seawater: Better fitting equations. Limnology and Oceanography, 37(6), 1307-1312.
Hupe, A., & Karstensen, J. (2000). Redfield stoichiometry in Arabian Sea subsurface waters. Global Biogeochemical Cycles, 14(1), 357-372.
Ito, T., Minobe, S., Long, M. C., & Deutsch, C. (2017). Upper ocean O2 trends: 1958–2015. Geophysical research letters, 44(9), 4214-4223.
Johns, W., Yao, F., Olson, D., Josey, S., Grist, J., & Smeed, D. (2003). Observations of seasonal exchange through the Straits of Hormuz and the inferred heat and freshwater budgets of the Persian Gulf. Journal of Geophysical Research: Oceans, 108(C12).
Johns, W. E., Jacobs, G. A., Kindle, J. C., Murray, S. P., & Carron, M. (1999). Arabian marginal seas and gulfs.
Jokinen, S. A., Virtasalo, J. J., Jilbert, T., Kaiser, J., Dellwig, O., Arz, H. W., Hänninen, J., Arppe, L., Collander, M., & Saarinen, T. (2018). A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century. Biogeosciences, 15(13), 3975-4001.
Justic, D., Rose, K. A., Hetland, R. D., & Fennel, K. (2017). Modeling Coastal Hypoxia: Numerical Simulations of Patterns, Controls and Effects of Dissolved Oxygen Dynamics. Springer.
Kämpf, J., & Sadrinasab, M. (2006). The circulation of the Persian Gulf: a numerical study. Ocean Science, 2(1), 27-41.
Karbassi, A., Abdollahzadeh, E. M., Fariman, G., Nazariha, M., & Assadi, M. (2016). Development of Trophy Index along South-East Coast of Oman Sea and its Relationship with Harmful Algae Bloom. Journal of Applied Environmental and Biological Sciences, 19-27.
Keeling, R. F., Körtzinger, A., & Gruber, N. (2010). Ocean deoxygenation in a warming world. Annual review of marine science, 2, 199-229.
l'Hégaret, P., Marez, C. d., Morvan, M., Meunier, T., & Carton, X. (2021). Spreading and vertical structure of the Persian Gulf and Red Sea outflows in the northwestern Indian Ocean. Journal of Geophysical Research: Oceans, 126(4), e2019JC015983.
Lachkar, Z., Lévy, M., & Smith, K. S. (2019). Strong intensification of the Arabian Sea oxygen minimum zone in response to Arabian Gulf warming. Geophysical research letters, 46(10), 5420-5429.
Lachkar, Z., Mehari, M., Al Azhar, M., Lévy, M., & Smith, S. (2021). Fast local warming is the main driver of recent deoxygenation in the northern Arabian Sea. Biogeosciences, 18(20), 5831-5849.
Lachkar, Z., Mehari, M., Levy, M., Paparella, F., & Burt, J. A. (2022). Recent expansion and intensification of hypoxia in the Arabian Gulf and its drivers. Frontiers in Marine Science, 9, 891378.
Laffoley, D., & Baxter, J. M. (2019). Ocean deoxygenation: Everyone's problem-causes, impacts, consequences and solutions. IUCN Gland, Switzerland.
Lehmann, M., Schleder, D., Guertler, C., Perazzolo, L., & Vinatea, L. (2016a). Hypoxia increases susceptibility of Pacific white shrimp to whitespot syndrome virus (WSSV). Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 68, 397-403.
Lehmann, M., Schleder, D., Guertler, C., Perazzolo, L., & Vinatea, L. (2016b). Hypoxia increases susceptibility of Pacific white shrimp to whitespot syndrome virus (WSSV). Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 68(2), 397-403.
Lehrter, J. C., Ko, D. S., Lowe, L. L., & Penta, B. (2017). Predicted effects of climate change on northern Gulf of Mexico hypoxia. Modeling coastal hypoxia: Numerical simulations of patterns, controls and effects of dissolved oxygen dynamics, 173-214.
Levin, L., Ekau, W., Gooday, A., Jorissen, F., Middelburg, J., Naqvi, S., Neira, C., Rabalais, N., & Zhang, J. (2009). Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences, 6(10), 2063-2098.
Li, G., Cheng, L., Zhu, J., Trenberth, K. E., Mann, M. E., & Abraham, J. P. (2020). Increasing ocean stratification over the past half-century. Nature Climate Change, 10(12), 1116-1123.
Li, M., Lee, Y. J., Testa, J. M., Li, Y., Ni, W., Kemp, W. M., & Di Toro, D. M. (2016). What drives interannual variability of hypoxia in Chesapeake Bay: Climate forcing versus nutrient loading? Geophysical research letters, 43(5), 2127-2134.
Long, M. C., Deutsch, C., & Ito, T. (2016). Finding forced trends in oceanic oxygen. Global Biogeochemical Cycles, 30(2), 381-397.
Los, F., Villars, M., & Van der Tol, M. (2008). A 3-dimensional primary production model (BLOOM/GEM) and its applications to the (southern) North Sea (coupled physical–chemical–ecological model). Journal of Marine Systems, 74(1-2), 259-294.
Meier, H., Eilola, K., Almroth-Rosell, E., Schimanke, S., Kniebusch, M., Höglund, A., Pemberton, P., Liu, Y., Väli, G., & Saraiva, S. (2019). Disentangling the impact of nutrient load and climate changes on Baltic Sea hypoxia and eutrophication since 1850. Climate Dynamics, 53, 1145-1166.
Meier, H., Hordoir, R., Andersson, H., Dieterich, C., Eilola, K., Gustafsson, B. G., Höglund, A., & Schimanke, S. (2012). Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099. Climate Dynamics, 39, 2421-2441.
Meier, H. M., Andersson, H. C., Eilola, K., Gustafsson, B. G., Kuznetsov, I., Müller‐Karulis, B., Neumann, T., & Savchuk, O. P. (2011). Hypoxia in future climates: A model ensemble study for the Baltic Sea. Geophysical research letters, 38(24).
Naqvi, S., Naik, H., Pratihary, A., D'souza, W., Narvekar, P., Jayakumar, D., Devol, A., Yoshinari, T., & Saino, T. (2006). Coastal versus open-ocean denitrification in the Arabian Sea. Biogeosciences, 3(4), 621-633.
Officer, C. B., Biggs, R. B., Taft, J. L., Cronin, L. E., Tyler, M. A., & Boynton, W. R. (1984). Chesapeake Bay anoxia: origin, development, and significance. Science, 223(4631), 22-27.
Olbert, A. I., Dabrowski, T., Nash, S., & Hartnett, M. (2012). Regional modelling of the 21st century climate changes in the Irish Sea. Continental Shelf Research, 41, 48-60.
Oschlies, A., Brandt, P., Stramma, L., & Schmidtko, S. (2018). Drivers and mechanisms of ocean deoxygenation. Nature Geoscience, 11(7), 467-473.
Paulmier, A., & Ruiz-Pino, D. (2009). Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanography, 80(3-4), 113-128.
Pena, M., Katsev, S., Oguz, T., & Gilbert, D. (2010). Modeling dissolved oxygen dynamics and hypoxia. Biogeosciences, 7(3), 933-957.
Piontkovski, S., & Al-Oufi, H. (2015). The Omani shelf hypoxia and the warming Arabian Sea. International Journal of Environmental Studies, 72(2), 256-264.
Piontkovski, S., & Chiffings, T. (2014). Long-term changes of temperature in the Sea of Oman and the western Arabian Sea. International Journal of Oceans and Oceanography, 8(1), 53-72.
Piontkovski, S. A., & Queste, B. Y. (2016). Decadal changes of the Western Arabian sea ecosystem. International Aquatic Research, 8(1), 49-64.
Pous, S., Carton, X., & Lazure, P. (2004). Hydrology and circulation in the Strait of Hormuz and the Gulf of Oman—Results from the GOGP99 Experiment: 1. Strait of Hormuz. Journal of Geophysical Research: Oceans, 109(C12).
Prakash, S., Nair, T. B., Bhaskar, T. U., Prakash, P., & Gilbert, D. (2012). Oxycline variability in the central Arabian Sea: An Argo-oxygen study. Journal of sea research, 71, 1-8.
Prasad, T., Ikeda, M., & Kumar, S. P. (2001). Seasonal spreading of the Persian Gulf Water mass in the Arabian Sea. Journal of Geophysical Research: Oceans, 106(C8), 17059-17071.
Queste, B. Y., Vic, C., Heywood, K. J., & Piontkovski, S. A. (2018). Physical controls on oxygen distribution and denitrification potential in the north west Arabian Sea. Geophysical research letters, 45(9), 4143-4152.
Rabalais, N. N., Turner, R. E., & Scavia, D. (2002). Beyond Science into Policy: Gulf of Mexico Hypoxia and the Mississippi River: Nutrient policy development for the Mississippi River watershed reflects the accumulated scientific evidence that the increase in nitrogen loading is the primary factor in the worsening of hypoxia in the northern Gulf of Mexico. BioScience, 52(2), 129-142.
Radhakrishnan, K., & Namboodiripad, K. (1995). Thermocline Variability in the Arabian Sea and its effects on Acoustic Propagation Physical Oceanography and Meterology Division, School of Marine Sciences.
Resplandy, L., Lévy, M., Bopp, L., Echevin, V., Pous, S., Sarma, V., & Kumar, D. (2012). Controlling factors of the OMZ in the Arabian Sea. Biogeosciences Discussions, 9(5).
Reynolds, R. M. (1993). Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Marine Pollution Bulletin, 27, 35-59.
Rixen, T., & Ittekkot, V. (2005). Nitrogen deficits in the Arabian Sea, implications from a three component mixing analysis. Deep Sea Research Part II: Topical Studies in Oceanography, 52(14-15), 1879-1891.
Robinson, C. (2018). Microbial respiration, the engine of ocean deoxygenation. Front Mar Sci 5: 533. In.
Saleh, A., Abtahi, B., Mirzaei, N., Chen, C.-T. A., Ershadifar, H., Ghaemi, M., Hamzehpour, A., & Abedi, E. (2021). Hypoxia in the Persian Gulf and the Strait of Hormuz. Marine Pollution Bulletin, 167, 112354.
Sarma, V. (2002). An evaluation of physical and biogeochemical processes regulating perennial suboxic conditions in the water column of the Arabian Sea. Global Biogeochemical Cycles, 16(4), 29-21-29-11.
Shetye, S., Gouveia, A., & Shenoi, S. (1994). Circulation and water masses of the Arabian Sea. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 103(2), 107-123.
Stramma, L., Johnson, G. C., Sprintall, J., & Mohrholz, V. (2008). Expanding oxygen-minimum zones in the tropical oceans. Science, 320(5876), 655-658.
Stramma, L., Schmidtko, S., Levin, L. A., & Johnson, G. C. (2010). Ocean oxygen minima expansions and their biological impacts. Deep Sea Research Part I: Oceanographic Research Papers, 57(4), 587-595.
Swallow, J. (1984). Some aspects of the physical oceanography of the Indian Ocean. Deep Sea Research Part A. Oceanographic Research Papers, 31(6-8), 639-650.
Thangaraja, M., Al-Aisry, A., & Al-Kharusi, L. (2007). Harmful algal blooms and their impacts in the middle and outer ROPME sea area. International Journal of Oceans and Oceanography, 2(1), 85-98.
Thomas, P., Rahman, M. S., Picha, M. E., & Tan, W. (2015). Impaired gamete production and viability in Atlantic croaker collected throughout the 20,000 km2 hypoxic region in the northern Gulf of Mexico. Marine Pollution Bulletin, 101(1), 182-192.
Wang, L., & Justić, D. (2009). A modeling study of the physical processes affecting the development of seasonal hypoxia over the inner Louisiana-Texas shelf: Circulation and stratification. Continental Shelf Research, 29(11-12), 1464-1476.
Warren, B. A. (1981). Transindian hydrographic section at Lat. 18 S: Property distributions and circulation in the South Indian Ocean. Deep Sea Research Part A. Oceanographic Research Papers, 28(8), 759-IN748.
Webb, P. (2021). Introduction to oceanography. Roger Williams University.
Wyrtki, K. (1973). Physical oceanography of the Indian Ocean. In The biology of the Indian Ocean (pp. 18-36). Springer.
Wyrtki, K., Bennett, E. B., & Rochford, D. J. (1971). Oceanographic atlas of the international Indian Ocean expedition (Vol. 531). National Science Foundation Washington, DC.
Yakushev, E., Pollehne, F., Jost, G., Kuznetsov, I., Schneider, B., & Umlauf, L. (2007). Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Marine Chemistry, 107(3), 388-410.
Yao, S., Huang, Q., Zhang, Y., & Zhou, X. (2013). The simulation of water vapor transport in East Asia using a regional air–sea coupled model. Journal of Geophysical Research: Atmospheres, 118(4), 1585-1600.
You, Y., & Tomczak, M. (1993). Thermocline circulation and ventilation in the Indian Ocean derived from water mass analysis. Deep Sea Research Part I: Oceanographic Research Papers, 40(1), 13-56.
Zhang, J., Gilbert, D., Gooday, A., Levin, L., Naqvi, S. W. A., Middelburg, J., Scranton, M., Ekau, W., Pena, A., & Dewitte, B. (2010). Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences, 7(5), 1443-1467.