Sulfur Dioxide (SO2) Monitoring Based on MetOp-A/GOME-2 Sensor Observations in the Troposphere of Iran

Document Type : Research Paper

Author

Department of Geography, Faculty of Humanities, University of Zanjan, Zanjan Province, Iran.

Abstract

Introduction
Sulfur dioxide (SO2) is one of the most important air pollutants that can threaten human health and cause respiratory problems, headaches, dizziness and previous attacks. SO2 is the predominant sulfur oxide in the atmosphere, which is non-flammable, non-explosive and colorless, and at concentrations above 3 ppm has a pungent odor and can be fatal. Airway narrowing, bronchospasm, severe cough, eye and respiratory tract irritation, decreased respiratory function and shortness of breath, decreased respiratory depth, and ultimately exacerbated cardiovascular and respiratory complications from the health effects attributed to SO2 It counts. This pollutant in combination with hydroxide and reducing the pH of precipitation, falls in the form of acid rain on the ground and acidifies water and soil, with adverse environmental consequences. On the other hand, SO2 plays an important role in atmospheric chemistry, especially air pollution, and is one of the most important Photochemical smoke fog. SO2 can also alter the earth's radiative balance through photochemical interactions by radiation induction. Therefore, it has a great ability to create climate change by disrupting the energy balance of the Earth system and changing the mechanism of cloud formation. It is estimated that more than 15 sensors are continuously active in monitoring air pollution and atmospheric chemistry and provide the necessary data to those interested. Therefore, many studies have been performed using remote sensing techniques to monitor SO2. The GOME-2 sensor, which was placed on the MetOp-A satellite on October 19, 2006 for data collection of several important gases (O3, NO2, CO2, CO, SO2,), is the basis of research. There was a lot of SO2 monitoring. Good horizontal resolution along with daily time resolution make this sensor suitable for long-term monitoring purposes. SO2 contamination in Iran has been reported by foreign and domestic researchers. However, although SO2 has been studied from several aspects in Iran, but due to the health risks to people living in contaminated areas, there are still many questions about temporal-spatial distribution, trends, hotspots, Its spatial differences and similarities are present in the troposphere of Iran. Therefore, the focus of the present study is to analyze the concentration of SO2 in Iran between 2007 and 2020 using the observations of the GOME-2 sensor of the MetOp-A satellite to answer the questions.
Materials and Methods
The GOME-2 sensor covers a wide range from 240 to 790 nm, with a spectral resolution of 0.26 to 0.51 nm and has an equatorial the time of the passing of 9:30 local time in the Sun-Orbit. The spatial resolution or size of each pixel of this sensor for the main channels is in the form of 80 × 40 km and scan width of 1920 km and 40 × 40 km with scan width of 960 km, which covers the whole world on a daily basis. The use of GOME-2 sensor SO2 products, due to good spectral resolution and optimal calibration compared to similar instruments, has been the basis of numerous studies in the world in the direction of atmospheric SO2 monitoring. In this study, the tropospheric SO2 observations of the Gome-2 sensor in the period of 2007-2020 were used. The data used is an estimate of the weight of SO2 micrograms per cubic meter of tropospheric air, expressed in micrograms per cubic meter (µg/m³). This data was extracted from the website (http://www.temis.nl) with monthly and spatial separation of 40×40 km and after applying quality control and necessary processing, it was converted into monthly, seasonal and annual values. Accordingly, the dimensions of the arrays created are 168×1030 for the months and 56×1030 for the seasons, respectively. The data used, which is digital and the value of SO2 is a numerical value per pixels, was converted into network data and data tables by applying geostatistical algorithms in specialized software environment (Arc GIS, ENVI) Necessary was extracted and analyzed as a raster based on the geographical border of Iran.
Discussion of Results
The mean concentration of SO2 in the troposphere of Iran was 28.5 µg/m³ and the maximum and minimum values were estimated to be 200.9 µg/m³ and 1.70 µg/m³ with a standard deviation of 15.9 µg/m³, respectively. Spatially, Khuzestan province has the highest average SO2 concentration in Iran, followed by Ilam, Bushehr, Tehran, Alborz, Gilan, Mazandaran and southern Kerman. The amount of SO2 over Tehran is also significant. Among the reasons for the high level of tropospheric SO2 over Tehran, we can mention several factors, including geographical and human factors. The location of the city of Tehran in the semi-enclosed environment of the southern slope of the Alborz highlands, causes the Alborz mountains in the north and east to prevent air conditioning as a barrier and provide conditions for the persistence and continuity of tropospheric SO2. The dominance of temperature inversion conditions and the continuous establishment of high-pressure systems are other climatic features of the region that create the conditions for intensifying air pollution in Tehran in some days of the year. In addition to the natural factors mentioned, the establishment of factories and industries in the city (especially in the west and southwest), power plants and refining companies can be added to the amount of tropospheric SO2. The coastal area of northern Iran (Mazandaran and Gilan provinces) has a high population density due to the location of Neka power plant on the one hand and on the other hand due to the favorable weather conditions and relatively favorable infrastructure development. Other areas also experience relatively high concentrations of SO2 during the year due to their industrial nature, dilapidated fleet, and the existence of cement plants and power plants based on diesel or fuel oil (southern Kerman province). These areas are contaminated with tropospheric SO2 according to air quality standards. Analysis of the tropospheric SO2 time series during 168 consecutive months (2020-2007) shows the decreasing trend of SO2 emission in the surface troposphere of Iran. The decrease in tropospheric SO2 concentration in Iran has occurred while Iran joined the Kyoto Protocol in 2005 and has announced cooperation in reducing greenhouse gases.
Conclusions
The aim of the present study is to estimate the spatio-temporal distribution of tropospheric SO2 in Iran using the observations of the GOME-2 sensor of the MetOp-A satellite during the years 2007-2020. The results showed; The average tropospheric SO2 in Iran is 28.5 µg/m³, among which, the highest/lowest values observed are 200.9 µg/m³ and 1.7 µg/m³, respectively, with a standard deviation of 15 µg/m³ It has been. In terms of spatial distribution, the highest concentration of tropospheric SO2 pollutant over a continuous range from northwest of Kermanshah province to the west of Hormozgan province and the provinces of Tehran, Alborz, Gilan, Mazandaran, Isfahan and south of Kerman province. The average of this gas has decreased by 25% from 35 µg/m³ in 2007 to 26 µg/m³ in 2020. Analysis of the output related to the seasonal average of SO2 distribution showed that the seasonal maximum of SO2 occurs in autumn and its seasonal minimum occurs in summer. The highest average monthly SO2 emissions were observed in October, November and January and the lowest in June and July respectively. Higher SO2 concentrations in the colder months and seasons of the year, on the one hand due to more active sources of emissions such as higher fuel oil consumption, increased traffic volume, increasing the amount of fossil fuel consumption to provide Heating of residential and service spaces and on the other hand due to the prevailing meteorological conditions in this period of the year (occurrence of the phenomenon of temperature inversion and reduction of the thickness of the atmospheric boundary layer). The study of the spatial distribution of tropospheric SO2 concentration also indicates its significant spatial differences in the geographical area of Iran. The difference is due to the heterogeneous distribution of tropospheric SO2 production and emission centers in Iran.

Keywords


جعفری، ن؛ محمدی، ا؛ نعمتی، س؛ حاجی‌‌زاده، ی؛ شیروانی، ا؛ عبداله‌‌نژاد، ع؛ شیراوند، ب (1395). پهنه‌‌بندی توزیع آلاینده‌‌های شاخص آلودگی هوا در شهر اصفهان و برآورد مرگ‌‌ومیر منتسب به آن، مجله تحقیقات سلامت در جامعه، 2(4)، صص 25 -11.
رئیس‌‌پور، ک؛ خسروی، ی (1399). بررسی پراکندگی مکانی‌‌ ـ زمانی گاز مونوکسید کربن در اتمسفر ایران با استفاده از داده‌هایAqua/AIRS، مجله تحلیل فضایی مخاطرات محیطی، 7(۲)، صص۱۳۷-۱۵۲.
شرعی‌‌پور، ز؛ علی اکبری بیدختی، ع (1394). بررسی وضعیت NO2 تروپوسفری ایران طی سال‌‌های 2004 تا 2012، مجله محیط‌‌شناسی، 40(1)، صص 78 – 65.
گراوندی، س؛ گودرزی، غ؛ وثوقی‌‌نیری، م؛ محمدی، م.ج (1394). برآورد موارد مرگ ناشی از بیماری‌‌های قلبی ـ عروقی و تنفسی و تعداد موارد سکتۀ قلبی در اثر تماس با آلایندۀ دی اکسیدگوگرد شهر اهواز، مجله محیط‌‌شناسی، 41(2)، صص350 - 341.
لیلی، م؛ بهرامی‌‌اصل، ف؛ حسام، م؛ ملامحمودی، م؛ سلحشور آرین، س (1395). برآورد تعداد بیماری و مرگ منتسب به آلاینده‌‌های NO2 و SO2 با استفاده از مدل AirQ در شهر همدان، 1395، مجله علمی دانشگاه علوم پزشکی همدان، 23(4)، صص 322 – 314.
‌‌مجلسی‌‌نصر، م؛ انصاری‌‌زاده م؛ لیلی، م (1395). بررسی غلظت آلاینده‌‌های هوا و کیفیت هوا (AQI) در شهر شیراز طی سال‌‌های 1390 تا 1392، مجله مهندسی بهداشت محیط، 3 (3)، صص 192- 182.
نورپور، ع؛ فیض، م.ع (1395). تعیین تغییرات مکانی و زمانی آلاینده‌‌های گوگرد دی‌‌اکسید، نیتروژن دی‌‌اکسید و انواع ذرات معلق با استفاده از تکنیک‌‌های GIS در شهر تهران، 1393، مجله محیط‌‌شناسی، 40(3)، صص 738 – 723.
Abel, C., Horion, S., Tagesson, T., Brandt, M., & Fensholt, R. (2019). Towards improved remote sensing based monitoring of dryland ecosystem functioning using sequential linear regression slopes (SeRGS). Remote Sensing of Environment, 224, 317-332.
Afif, C., Chélala, C., Borbon, A., Abboud, M., Adjizian-Gérard, J., Farah, W., & Rizk, T. (2008). SO2 in Beirut: air quality implication and effects of local emissions and long-range transport. Air Quality, Atmosphere & Health, 1(3), 167-178.
Beirle, S., Hormann, C., Penning de Vries, M., Dorner, S., Kern, C., & Wagner, T. (2014). Estimating the volcanic emission rate and atmospheric lifetime of SO2 from space: a case study for Kīlauea volcano, Hawaii. Atmospheric Chemistry and Physics, 14(16), 8309-8322.
Birk, Manfred, & Wagner, Georg. (2018). ESA SEOM-IAS – Measurement and ACS database SO2 UV region (Version 1) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.1492582
Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., & Lefebvre, A. (2000). GOME-2-Metop's second-generation sensor for operational ozone monitoring. ESA bulletin, 102, 28-36.
Cheng, W. L., Chen, Y. S., Zhang, J., Lyons, T. J., Pai, J. L., & Chang, S. H. (2007). Comparison of the revised air quality index with the PSI and AQI indices. Science of the Total Environment, 382(2-3), 191-198.
Corradini, S., Guerrieri, L., Brenot, H., Clarisse, L., Merucci, L., Pardini, F., & Theys, N. (2021). Tropospheric Volcanic SO2 Mass and Flux Retrievals from Satellite. The Etna December 2018 Eruption. Remote Sensing, 13(11), 2225.
Curtis, L., Rea, W., Smith-Willis, P., Fenyves, E., & Pan, Y. (2006). Adverse health effects of outdoor air pollutants. Environment international, 32(6), 815-830.
De Smedt, I., Müller, J. F., Stavrakou, T., der A, R. V., Eskes, H., & Roozendael, M. V. (2008). Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors. Atmospheric Chemistry and Physics, 8(16), 4947-4963.
De Smedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlemmix, T., Pinardi, G., & Van Roozendael, M. (2015). Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations. Atmospheric Chemistry and Physics, 15(21), 12519-12545.
De Smedt, I., Van Roozendael, M., Stavrakou, T., Müller, J. F., Lerot, C., Theys, N., & Van Der, A. (2012). Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues. Atmospheric Measurement Techniques, 5(11), 2933-2949.
Dimitropoulou, E., Hendrick, F., Pinardi, G., Friedrich, M. M., Merlaud, A., Tack, F., & Van Roozendael, M. (2020). Validation of TROPOMI tropospheric NO2 columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels. Atmospheric Measurement Techniques, 13(10), 5165-5191.
Duncan, B. N., Lamsal, L. N., Thompson, A. M., Yoshida, Y., Lu, Z., Streets, D. G., & Pickering, K. E. (2016). A space‐based, high‐resolution view of notable changes in urban NOx pollution around the world (2005–2014). Journal of Geophysical Research: Atmospheres, 121(2), 976-996.
Eisinger, M., & Burrows, J.P. (2008). Tropospheric sulfur dioxide observed by the GOME-2 instrument, 25 (2), 4177-4180.
European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). (2017). Emission Database for Global Atmospheric Research (EDGAR), release version 4.1 and 4.2.
Fattore, E., Paiano, V., Borgini, A., Tittarelli, A., Bertoldi, M., Crosignani, P., & Fanelli, R. (2011). Human health risk in relation to air quality in two municipalities in an industrialized area of Northern Italy. Environmental research, 111(8), 1321-1327.
Fioletov, V. E., McLinden, C. A., Cede, A., Davies, J., Mihele, C., Netcheva, S., & O'Brien, J. (2016). Sulfur dioxide (SO2) vertical column density measurements by Pandora spectrometer over the Canadian oil sands. Atmospheric Measurement Techniques, 9(7), 2961-2976.
Fioletov, V. E., McLinden, C. A., Krotkov, N., Li, C., Joiner, J., Theys, N., & Moran, M. D. (2016). A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument. Atmospheric Chemistry and Physics, 16(18), 11497-11519.
Fioletov, V. E., McLinden, C. A., Krotkov, N., Yang, K., Loyola, D. G., Valks, P.,  & Martin, R. V. (2013). Application of OMI, SCIAMACHY, and GOME‐2 satellite SO2 retrievals for detection of large emission sources. Journal of Geophysical Research: Atmospheres, 118(19), 11-399.
Fioletov, V. E., McLinden, C., Krotkov, N., & Li, C. (2015). Lifetimes and emissions of SO2 from point sources estimated from OMI. Geophysical Research Letters, 42(6), 1969-1976.
 Fioletov, V., McLinden, C. A., Griffin, D., Theys, N., Loyola, D. G., Hedelt, P., & Li, C. (2020). Anthropogenic and volcanic point source SO2 emissions derived from TROPOMI on board Sentinel-5 Precursor: first results. Atmospheric Chemistry and Physics, 20(9), 5591-5607.
Ghude, S. D., Beig, G., Fadnavis, S., & Polade, S. D. (2009). Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison. Environmental Pollution, 157(6), 1873-1878.
Hao, N., Koukouli, M. E., Inness, A., Valks, P., Loyola, D. G., Zimmer, W., & Spurr, R. J. D. (2014). GOME-2 total ozone columns from MetOp-A/MetOp-B and assimilation in the MACC system. Atmospheric Measurement Techniques, 7(9), 2937-2951.
Heue, K. P., Brenninkmeijer, C. A. M., Baker, A. K., Rauthe-Schoch, A., Walter, D., Wagner, T.,  & Ebinghaus, R. (2011). SO2 and BrO observation in the plume of the Eyjafjallajökull volcano 2010: CARIBIC and GOME-2 retrievals. Atmospheric Chemistry and Physics, 11(6), 2973-2989.
Hewson, W., Bösch, H., Barkley, M. P., & Smedt, I. D. (2013). Characterisation of GOME-2 formaldehyde retrieval sensitivity. Atmospheric Measurement Techniques, 6(2), 371-386.
Hormann, C., Sihler, H., Bobrowski, N., Beirle, S., Penning de Vries, M., Platt, U., & Wagner, T. (2013). Systematic investigation of bromine monoxide in volcanic plumes from space by using the GOME-2 instrument. Atmospheric Chemistry and Physics, 13(9), 4749-4781.
Huanhuan, Y., Liangfu, C., Lin, S., Jinhua, T., & Chao, Y. (2014, March). SO2 columns over China: Temporal and spatial variations using OMI and GOME-2 observations. In IOP Conference Series: Earth and Environmental Science (Vol. 17, No. 1, p. 012027). IOP Publishing.
Irie, H., Boersma, K. F., Kanaya, Y., Takashima, H., Pan, X., & Wang, Z. F. (2012). Quantitative bias estimates for tropospheric NO2 columns retrieved from SCIAMACHY, OMI, and GOME-2 using a common standard for East Asia. Atmospheric Measurement Techniques, 5(10), 2403-2411.
Jerrett, M., Shankardass, K., Berhane, K., Gauderman, W. J., Künzli, N., Avol, E., & McConnell, R. (2008). Traffic-related air pollution and asthma onset in children: a prospective cohort study with individual exposure measurement. Environmental health perspectives, 116(10), 1433-1438.
Jiang, J., Zha, Y., Gao, J., & Jiang, J. (2012). Monitoring of SO2 column concentration change over China from Aura OMI data. International Journal of Remote Sensing, 33(6), 1934-1942.
Klaes, K. D., Ackermann, J., Anderson, C., Andres, Y., August, T., Borde, R., & Vazquez-Navarro, M. (2021). The EUMETSAT Polar System: 13+ Successful Years of Global Observations for Operational Weather Prediction and Climate Monitoring. Bulletin of the American Meteorological Society, 102(6), E1224-E1238.
Klimont, Z., Smith, S. J., & Cofala, J. (2013). The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environmental Research Letters, 8(1), 014003.
Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., & Streets, D. G. (2015). Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2014. Atmospheric Chemistry & Physics Discussions, 15(19).
Kumar, A., & Goyal, P. (2011). Forecasting of daily air quality index in Delhi. Science of the Total Environment, 409(24), 5517-5523.
Leelossy, A., Molnár, F., Izsak, F., Havasi, A., Lagzi, I., & Meszaros, R. (2014). Dispersion modeling of air pollutants in the atmosphere: a review. Open Geosciences, 6(3), 257-278.
Li, C., Krotkov, N. A., Leonard, P. J., Carn, S., Joiner, J., Spurr, R. J., & Vasilkov, A. (2020a). Version 2 Ozone Monitoring Instrument SO2 product (OMSO2 V2): new anthropogenic SO2 vertical column density dataset. Atmospheric Measurement Techniques, 13(11), 6175-6191.
Li, C., Krotkov, N. A., Leonard, P. J., Carn, S., Joiner, J., Spurr, R. J., & Vasilkov, A. (2020b). Version 2 Ozone Monitoring Instrument SO2 product (OMSO2 V2): new anthropogenic SO2 vertical column density dataset. Atmospheric Measurement Techniques, 13(11), 6175-6191.
Li, C., McLinden, C., Fioletov, V., Krotkov, N., Carn, S., Joiner, J., & Dickerson, R. R. (2017). India is overtaking China as the world’s largest emitter of anthropogenic sulfur dioxide. Scientific reports, 7(1), 1-7.
Liu, F., van der A, R. J., Eskes, H., Ding, J., & Mijling, B. (2018). Evaluation of modeling NO2 concentrations driven by satellite-derived and bottom-up emission inventories using in situ measurements over China. Atmospheric Chemistry and Physics, 18(6), 4171-4186.
Livschitz, Y., & Perez Albinana, A. (2006, June). GOME-2 on Metop: from in-orbit verification to routine operations. In Proceedings of EUMETSAT Meteorological Satellite Conference, Helsinki, Finland (pp. 14539-14550).
Lu, Z., Streets, D. G., de Foy, B., & Krotkov, N. A. (2013). Ozone Monitoring Instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005–2012. Environmental science & technology, 47(24), 13993-14000.
Lu, Z., Streets, D. G., de Foy, B., & Krotkov, N. A. (2013). Ozone Monitoring Instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005–2012. Environmental science & technology, 47(24), 13993-14000.
McLinden, C. A., Fioletov, V., Boersma, K. F., Kharol, S. K., Krotkov, N., Lamsal, L., & Yang, K. (2014). Improved satellite retrievals of NO2 and SO2 over the Canadian oil sands and comparisons with surface measurements. Atmospheric Chemistry and Physics, 14(7), 3637-3656.
Mohammadi, M. J., Goudarzi, G., Geravandi, S., Yari, A. R., Ghalani, B., Shirali, S., & Esmaili, M. (2016). Dispersion modeling of nitrogen dioxide in ambient air of Ahvaz city. Health Scope, 5(2).
Munro, R., Lang, R., Klaes, D., Poli, G., Retscher, C., Lindstrot, R., & Eisinger, M. (2016). The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing–an overview. Atmospheric Measurement Techniques, 9(3), 1279-1301.
Naddafi, K., Hassanvand, M. S., Yunesian, M., Momeniha, F., Nabizadeh, R., Faridi, S., & Gholampour, A. (2012). Health impact assessment of air pollution in megacity of Tehran, Iran. Iranian journal of environmental health science & engineering, 9(1), 1-7.
Nowlan, C. R., Liu, X., Chance, K., Cai, Z., Kurosu, T. P., Lee, C., & Martin, R. V. (2011). Retrievals of sulfur dioxide from the Global Ozone Monitoring Experiment 2 (GOME‐2) using an optimal estimation approach: Algorithm and initial validation. Journal of Geophysical Research: Atmospheres, 116(D18).
Piraino, F., Aina, R., Palin, L., Prato, N., Sgorbati, S., Santagostino, A., & Citterio, S. (2006). Air quality biomonitoring: Assessment of air pollution genotoxicity in the Province of Novara (North Italy) by using Trifolium repens L. and molecular markers. Science of the Total Environment, 372(1), 350-359.
Richter, A., Wittrock, F., Schönhardt, A., & Burrows, J. P. (2009). Quantifying volcanic SO2 emissions using GOME2 measurements. Geophys. Res. Abstr., EGU2009-7679, EGU General Assembly.
Rix, M., Valks, P., Hao, N., Loyola, D., Schlager, H., Huntrieser, H., & Inness, A. (2012). Volcanic SO2, BrO and plume height estimations using GOME‐2 satellite measurements during the eruption of Eyjafjallajökull in May 2010. Journal of Geophysical Research: Atmospheres, 117(D20).
Rix, M., Valks, P., Hao, N., Van Geffen, J., Clerbaux, C., Clarisse, L., & Emmadi, S. (2009). Satellite monitoring of volcanic sulfur dioxide emissions for early warning of volcanic hazards. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(3), 196-206.
Smith, S. J., Aardenne, J. V., Klimont, Z., Andres, R. J., Volke, A., & Delgado Arias, S. (2011). Anthropogenic sulfur dioxide emissions: 1850–2005. Atmospheric Chemistry and Physics, 11(3), 1101-1116.
Stavrakou, T., Müller, J. F., Bauwens, M., Smedt, I. D., Van Roozendael, M., Mazière, M. D.,  & Guenther, A. (2015). How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?. Atmospheric Chemistry and Physics, 15(20), 11861-11884.
Theys, N., Campion, R., Clarisse, L., Brenot, H., Gent, J. V., Dils, B., & Ferrucci, F. (2013). Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS. Atmospheric Chemistry and Physics, 13(12), 5945-5968.
Theys, N., Campion, R., Clarisse, L., Brenot, H., Gent, J. V., Dils, B., & Ferrucci, F. (2013). Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS. Atmospheric Chemistry and Physics, 13(12), 5945-5968.
Theys, N., Hedelt, P., De Smedt, I., Lerot, C., Yu, H., Vlietinck, J., & Van Roozendael, M. (2019). Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Scientific reports, 9(1), 1-10.
Timofeev, Y. M., Polyakov, A. V., Kozlov, D. A., Zavelevich, F. S., Golovin, Y. M., Döhler, W., ... & Spänkuch, D. (2019). Comparison between the Spectra of Outgoing Infrared Radiation for Different Years. Izvestiya, Atmospheric and Oceanic Physics, 55(9), 956-962.
Valks, P., Loyola, D., Hao, N., Rix, M., & Slijkhuis, S. (2011). ATBD for GOME-2 total columns of ozone, NO2, SO2, BrO, H2O, tropospheric NO2 and cloud properties. Rep. DLR/GOME-2/ATBD/01, 2/E.
Valks, P., Pinardi, G., Richter, A., Lambert, J. C., Hao, N., Loyola, D., & Emmadi, S. (2011). Operational total and tropospheric NO2 column retrieval for GOME-2. Atmospheric Measurement Techniques, 4(7), 1491-1514.
van der A, R. J., Mijling, B., Ding, J., Koukouli, M. E., Liu, F., Li, Q., & Theys, N. (2017). Cleaning up the air: effectiveness of air quality policy for SO2 and NOx emissions in China. Atmospheric Chemistry and Physics, 17(3), 1775-1789.
Van Geffen, J., Van Roozendael, M., Rix, M., & Valks, P. (2008). Initial validation of GOME-2 GDP 4.2 SO2 total columns (OTO/SO2)–ORR B, O3MSAF validation report. TN IASB-GOME2-O3MSAF-SO2-01.1.
Van Gent, J., Spurr, R., Theys, N., Lerot, C., Brenot, H., & Van Roozendael, M. (2012, April). SO2 plume height retrieval from direct fitting of GOME-2 backscattered radiance measurements. In EGU General Assembly Conference Abstracts (p. 5718).
Wang, T., Hendrick, F., Wang, P., Tang, G., Clémer, K., Yu, H., & Van Roozendael, M. (2014). Evaluation of tropospheric SO2 retrieved from MAX-DOAS measurements in Xianghe, China. Atmospheric Chemistry and Physics, 14(20), 11149-11164.
Wang, Y., Beirle, S., Lampel, J., Koukouli, M., Smedt, I. D., Theys, N., & Wagner, T. (2017). Validation of OMI, GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: investigation of the effects of priori profiles and aerosols on the satellite products. Atmospheric Chemistry and Physics, 17(8), 5007-5033.
World Health Organization. (2006). WHO. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulphur dioxide. Global update 2005. World Health Organization. Available from: http://www. euro. who. int/__data/assets/pdf_file/0005/786, 38, E90038.‏
Zara, M., Boersma, K. F., Smedt, I. D., Richter, A., Peters, E., Van Geffen, J. H., & Eskes, H. J. (2018). Improved slant column density retrieval of nitrogen dioxide and formaldehyde for OMI and GOME-2A from QA4ECV: intercomparison, uncertainty characterisation, and trends. Atmospheric Measurement Techniques, 11(7), 4033-4058.
Zhang, Y., Li, C., Krotkov, N. A., Joiner, J., Fioletov, V., & McLinden, C. (2017). Continuation of long-term global SO2 pollution monitoring from OMI to OMPS. Atmospheric Measurement Techniques, 10(4), 1495-1509.