Investigation of Land-Use Changes and their Impacts on Soil Erosion in Baghmalek Basin using Artificial Neural Network and RUSLE Model

Document Type : Research Paper


1 Department of Natural Resources and Environment, Islamic Azad University, Science and Research Branch of Tehran (Khuzestan), Ahvaz, Iran

2 Department of Geography and Rural Planning, Faculty of Geographical Sciences and Planning, Isfahan University, Isfahan, Iran


Soil erosion is a natural process that causes the level of soil loss by various environmental factors such as climate, soil, topography, and vegetation. However, human intervention can accelerate this process through land-use change and agricultural and construction activities. Therefore, today, soil erosion due to land-use change has become the most important issue of land degradation around the world, which results in landform change and disruption of the main functions of the ecosystem. These geomorphic reactions exacerbate soil erosion and increase the number of vulnerable areas. Recent studies have shown that the landscape characteristics of watersheds can explain about 65 to 74% of land-use changes in soil erosion and sediment yields; Because land-use reflects the interactions between humans and the environment and also describes the diverse human exploitation of space. The use of remote sensing data and GIS can provide a good understanding of how land-use changes and its optimal management. Also, by knowing the trend of land-use change, we can take steps towards balance and stability to prevent soil erosion and guide the ecosystem. Baghmalek Basin in Khuzestan province is one of the areas that are affected by human factors of soil erosion and factors such as land-use change, overgrazing, and interference in natural flood channels have intensified soil erosion and loss in the region. Degradation of rangeland lands and also lack of proper tillage operations on rainfed arable lands have been effective factors in erosion and sediment production in the region. In sloping areas, erosion has been rapid and accelerated, and erosion has filled irrigation canals. Also, due to the use of traditional methods in agriculture, the water stays on the soil for a long time and causes soil erosion and leaching downstream. In many parts of the basin, the land was not suitable for rainfed cultivation, but this type of cultivation was done in these areas and this action has caused the destruction and loss of soil in the basin. Therefore, according to the mentioned cases and also the importance of studying land-use change and their role in soil erosion over time and also emphasizing the efficiency and accuracy of the results of using remote sensing data and GIS, land-use changes in the basin Baghmalek and their role in soil erosion and sediment production (2019-2002) were studied.

Materials and Methods
In this study, an artificial neural network method was used to classify images and prepare land-use maps. Multilayer perceptron was used to classify the neural network. RUSLE model was used to estimate the average annual soil erosion. To extract the final soil erosion map, first, all the factors of the RUSLE model including R, K, L, S, C, and P were converted into GRID format maps and 30-meter scale, and then by multiplying all these layers, the amount of erosion The soil was calculated at the pixel level and the final map of soil erosion in the study basin was obtained. In fact, during this process, the information in the layer-specific pixels identified based on the RUSLE model relationships was combined in the GIS software environment by the Raster Calculator tool. In order to explain the possibility of sedimentation of eroded material and its movement in the canal network and finally, in the outlets of the basin, the values of the SDR sediment delivery ratio of the study area are calculated. To evaluate the effect of land-use change on soil erosion, the land-use map was compared with the soil erosion map of the same year and for each cover layer, the amount of erosion and the area of erosion floor was determined, which is given in the results section.

Discussion of Results
The results of land-use change showed that residential areas, barren lands, and rainfed agriculture increased by 1722.69, 3445.39, and 2584.04 hectares, respectively, and water zones, rangelands, and irrigated agriculture by 861.341, respectively, 42/6029 and 35/861 hectares have lost their area. Taking into account all the factors, the average landing limit is about 15 tons/ha/year, which for 2002 is 19.69 percent of the area and for 2019 about 45.36 percent of the area, the amount of erosion is more than acceptable have been. In this study, the sediment delivery ratio was between 0.12 to 0.23 and the maximum sediment load in the study area was between 0.29 to 0.58 and the total sediment was between 81051 to 313248. According to the results obtained in 2002, the area of floors of water zones, residential, barren lands, pastures, rainfed agriculture, and irrigated agriculture with erosion class of 10-15 ton/ha/year with an area of 818/28, 981/93, 83/83, respectively. 2454, 74/3927, 74/3927, and 05/4255 hectares, which have been changed to 654/62, 2490/24, 31109, 46/1582, 4418/70, and 4091/39 hectares in 2019. Also in 2002, the area of floors of water zones, residential, barren lands, pastures, rainfed agriculture, and irrigated agriculture with erosion class of 15-20 ton/ha/year from 90/41, 826/89, 2067/23, 4/341, respectively, 57/3307 and 95/4702 hectares have been changed to 533,723, 52/1086, 49/2618, 00/3075, 01/3721, and 06/4522 hectares in 2019. The area of residential areas, barren lands, and rainfed agriculture with erosion class of more than 20 ton/ha/year from 361.76, 904.41, and 1447.06 hectares in 2002 to 475.35, 1145.59, and 1627.94, respectively. Hectares in 2019 have increased. Also, the classes of water zones, pastures, and irrigated agriculture with erosion class of more than 20 ton/ha/year from 1593.49, 7664.75, and 8286.15 hectares in 2002 to 1274.79, 5417.86, and 7967.45, respectively. Hectares in 2019 have decreased. The general results show that in the study period between 2002 and 2019, the area of land-use classes with low erosion class has decreased and the area of high erosion classes has increased, mainly to the erosion class of more than 20 tons/ha/year.

The results showed that the increase of residential areas, rainfed agricultural lands, and barren areas, had a significant effect on increasing soil erosion in the study basin. According to the erosion maps obtained, the areas with higher erosion risk are mainly located in the rugged parts of the region. The results of estimating the criteria studied in the RUSLE method in the study basin indicate differences in soil properties and vegetation in different parts of the basin. According to the erosion zoning maps in the study area in 2002 and 2019, mainly the areas with the highest risk of erosion are located in rangeland lands and rainfed agriculture. The results of comparing the USDA, Vanoni, and Boyce methods with the amount of sediment load observations showed that the USDA model had better results in estimating the total sediment amount due to the low error rate compared to the Vanoni and Boyce methods. Also, comparing the total sediment estimated in the USDA method with the value obtained from the EPM method, shows the ability to combine the RUSLE and GIS models to estimate the amount of soil erosion and sediment load in the area.


آذرخشی، م.، الف.، مساعدی، م.، بشیری.، اوجاقلو شهابی. ر. (1396). اثر تغییرات بارش و کاربری اراضی بر تولید رسوب؛ مطالعۀ موردی: حوضۀ آبخیز صنوبر تربت حیدریه. علوم و مهندسی آبخیزداری، 11(37): 25-33.
آرخی، ص.، نیازی، ی. (1389). بررسی کاربرد GIS و RS برای تخمین فرسایش خاک و بار رسوب با استفاده از مدل RUSLE؛ مطالعۀ موردی: حوضۀ بالادست سد ایلام). پژوهش‌‌های حفاظت آب و خاک (علوم کشاورزی و منابع طبیعی)، 11(2): 1-27.
اسفندیاری، م.، معینی، ا.، مقدسی، ر. (1393). بررسی تأثیر کاربری اراضی و پوشش گیاهی بر اشکال فرسایش و میزان تولید رسوب؛ مطالعۀ موردی: حوضۀ آبخیز رود ورس استان قزوین. جغرافیایی سرزمین، 11(42): 51-62.
اسمعیل‌پور، ف.، سرایی، م.ح.، رضایی، م.ر. اسمعیل‌پور، ن. (1397). پیش‌بینی تغییرات کاربری اراضی و تعیین الگوی رشد شهری با استفاده از مدل زنجیره‌ای مارکوف و تصاویر ماهواره‌ای چندزمانه، مورد پژوهی: شهر اراک. کاوش‌های جغرافیایی مناطق بیابانی، 7(1): 113-147.
اصغری‌‌سراسکانرود، ص.، محمدنژاد آروق، و.، امامی، ه. (1398). بررسی تغییرات کاربری اراضی با استفاده از روش‌های پیکسل‌پایه و شیءگرا و تحلیل اثرات تغییر کاربری‌ها بر فرسایش خاک؛ مطالعۀ موردی: شهرستان مراغه. پژوهش‌های ژئومورفولوژی کمی، 8(1): 160-178.
اصغری‌‌سراسکانرود، ص.، آقایاری، ل.، پیروزی، ا. (1396). بررسی تغییرات کاربری اراضی و تأثیر آن بر فرسایش با استفاده از GIS و RS؛ مطالعۀ موردی: شهرستان نیر. سنجش از دور و سیستم اطلاعات جغرافیایی در منابع طبیعی، 8(4): 49-62.
ایوبی، ش.ا.، خرمالی، ف.، شتایی‌‌جویباری، ش. (1385). استفاده از تکنیک زمین آمار در تعیین مناسب‌ترین ابعاد سلول مدل رقومی زمین برای برآورد مشخصه توپوگرافی مدل برآورد فرسایش RUSLE در منطقه تاش علیا استان گلستان. پژوهش و سازندگی در منابع طبیعی، 20(77): 122-129.
روستایی، ش.، نیکجو، م.ر.، حبیب زاده، ا. (1389). بررسی فرسایش‌‌پذیری اراضی در حوضۀ آبخیز بجوش چای با استفاده از تئوری فازی و سیستم اطلاعات جغرافیایی. جغرافیا و برنامه‌‌ریزی، 15(33): 147-173.
سفیانیان، ع.، خداکرمی، ل. (1390). تهیه نقشه کاربری اراضی با استفاده از روش طبقه‌بندی فازی؛ مطالعۀ موردی: سه زیر حوضۀ آبخیز کبودر آهنگ، رزن قهاوند و خونجین تلخاب در استان همدان. آمایش سرزمین، 3(4): 95-114.
شایگان، م.، علیمحمدی، ع.، منصوریان، ع. (1391). بهینه‌‌سازی چندهدفه تخصیص کاربری اراضی با استفاده از الگوریتم NSGA-II. سنجش از دور و GIS ایران، 4(2): 1-18.
طاهرپرور، م.، پیرمرادیان، ن.، وظیفه‌‌دوست، م. (1395). مقایسه روش‌های پرکردن پیکسل‌های فاقد داده در تصاویر ماهواره لندست ETM+7 در برآورد نقشه ضریب گیاهی. تحقیقات آب و خاک ایران، 47(4): 665-676.
فیضی زاده، ب. (1396). مدل‌سازی تغییرات کاربری اراضی و اثرات آن بر سیستم فرسایش در حوضۀ سد علویان با استفاده از تکنیک‌های سنجش از دور و سیستم اطلاعات جغرافیایی. هیدروژئومورفولوژی، 4(11): 21-38.
کیانی‌‌هرچگانی، م.، صادقی، ح.ر.، فلاحتکار، س. (1398). تحلیل مقایسه‌ای عامل فرسایش‌پذیری خاک در حوضۀ آبخیز شازند. اکوهیدرولوژی،6(1): 153-163.
محمدی، ش.، کریم‌‌زاده، ح.ر. حبشی، خ. (1396). ارزیابی فرسایش خاک و رسوب حوضۀ آبخیز مندرجان با استفاده از مدل‌های USPED و RUSLE در محیط سیستم اطلاعات جغرافیایی. مهندسی اکوسیستم بیابان، 6(17): 43-56.
Anderson, G. L., Hanson, J. D., & Hass R. H. (1993). Evaluating landsat thematic mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands. Remote Sensing of the Environment, 45(2), 165-175.
Assis, K. G. O., da Silva, Y. J. A. B., Lopes, J. W. B., Medeiros, J. C., Teixeira, M. P. R., Rimá, F. B., & Singh, V. P. (2021). Soil loss and sediment yield in a perennial catchment in Southwest Piauí, Brazil. Environmental Monitoring and Assessment, 193(1), 1-11.
Babur, E., Uslu, Ö. S., Battaglia, M. L., Diatta, A., Fahad, S., Datta, R., Fahad, S., Datta, R., Hye, M., Hussain, G.S & Danish, S. (2021). Studying soil erosion by evaluating changes in physico-chemical properties of soils under different land-use types. Saudi Society of Agricultural Sciences, 20(3): 190-197.
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Van Oost, K., Montanarella, L., & Panagos, P. (2017). An assessment of the global impact of 21st century land-use change on soil erosion. Nature Communications, 8(1), 1-13.
Brink, A. B., Bodart, C., Brodsky, L., Defourney, P., Ernst, C., Donney, F., Lupi, A., & Tuckova, K. (2013). Anthropogenic pressure in East Africa monitoring 20 years of land-cover changes by means of medium resolution satellite data. Applied Earth Observation and Geoinformation, 28(1): 60-69.
Brown, L. C., & Foster, G. R. (1987). Storm erosivity using idealized intensity distributions. Transactions of the ASAE, 30(2): 379-0386.
Chen, J., Xiao, H., Li, Z., Liu, C., Wang, D., Wang, L., & Tang, C. (2019). Threshold effects of vegetation coverage on soil erosion control in small watersheds of the red soil hilly region in China. Ecological Engineering, 132, 109-114.
Chi, W., Zhao, Y., Kuang, W., & He, H. (2019). Impacts of anthropogenic land-use/cover changes on soil wind erosion in China. Science of the Total Environment, 668, 204-215.
Da-Silva, V. P. R., Silva M. T., & De Souza, E. P. (2016). Influence of land-use change on sediment yield: A case study of the submiddle of the Sao Francisco river basin. Soil and Water Engineering, 36(6): 1005-1015.
Diwediga, B., Le, Q. B., Agodzo, S. K., Tamene, L. D., & Wala, K. (2018). Modelling soil erosion response to sustainable landscape management scenarios in the Mo River Basin, Togo, West Africa. Science of the Total Environment, 625, 1309-1320.
Foster, G., & Wischmeier, W. (1974). Evaluating irregular slopes for soil loss prediction, Transactions of the ASAE, 17(2): 305-0309.
Han, J., Ge, W., Hei, Z., Cong, C., Ma, C., Xie, M., Liu, B., Feng, W., Wang, F., & Jiao, J. (2020). Agricultural land-use and management weaken the soil erosion induced by extreme rainstorms. Agriculture, Ecosystems & Environment, 301, 107047.
Hancock, G. R., Ovenden, M., Sharma, K., Rowlands, W., Gibson, A., & Wells, T. (2020). Soil erosion: The impact of grazing and regrowth trees. Geoderma, 361, 114102.
Lee, S., Chu, M. L., Guzman, J. A., & Botero-Acosta, A. (2021). A comprehensive modeling framework to evaluate soil erosion by water and tillage. Environmental Management, 279, 111631.
Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote Sensing and Image Interpretation. John Wiley and Sons, 736 p.
Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. Remote Sensing, 28(5): 823–870.
Martínez-Murillo, M. J. F., Lopez Vicente MPoesen, J., & Ruiz Sinoga, J. D. (2011). Modelling the effects of land-use changes on runoff and soil Eerosion in two Mediterranean catchments with active gullies (South of Spain). Landform Analysis, 17(1): 99-104.
Moore, I. D., & Burch, G. J. (1986). Physical basis of the length-slope factor in the Universal Soil Loss Equation, Soil Science Society of America Journal, 50(5): 1294-1298.
Nalina, P., Meenambal, T., Sathyanarayan, S. R. (2014). Land-use land-coer dynamics of nilgiris district, India infered from satelliti imageries. Applied Sciences, 3(11): 455-461.
Ouyang, W., Wu, Y., Hao, Z., Zhang, Q., Bu, Q., & Gao, X. (2018). Combined impacts of land-use and soil property changes on soil erosion in a mollisol area under long-term agricultural development. Science of the total environment, 613, 798-809.
Paul, S. S., Li, J., Li, Y., & Shen, L. (2019). Assessing land-use/land-cover change and soil erosion potential using a combined approach through remote sensing, RUSLE and random forest algorithm. Geocarto International, 36, 1-15.
Petropoulos, G., Kontoes, P., & Keramitsoglou, C. (2011). Burnt area delineation from a unitemporal perspective based on Landsat TM imagery classification using support vector machines. Applied Earth Observation and Geoinformation, 13(1), 70-80.
Pradhan, B., Chaudhari, A., Adinarayana, J., & Buchroithner, M. F. (2012). Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: Penang Island, Malaysia. Environmental Monitoring and Assessment, 184(2): 715-727.
Renard, K., Foster, G., Weesies, G., McCool, D., Yoder, D. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). US Departmentof Agriculture (Ed.), Agricultural Handbook. US Department of   Agriculture, Washington. 703: 1–251.
Ren, Y., Lü, Y., Comber, A., Fu, B., Harris, P., & Wu, L. (2019). Spatially explicit simulation of land-use/land-cover changes: Current coverage and future prospects. Earth Science Reviews, 190, 398-415.
Roose, E. (1996). Land husbandry: components and strategy. FAO Rome.
Santos, J. C. N., Andrade, E. M., Medeiros, P. H. A., & Joao, M. (2017). Land-use impact on soil erosion at different scales in the Brazilian semi-arid. Revista Ciencia Agronomica. 48(2): 251-260.
Singh, S., Agarwal, S., Joshi, P. K., & Roy, P. S. (1999). Biome level classification of vegetation in western India, an application of wide field view sensor (WiFS). In Joint Workshop of ISPRS Working Groups I/1, I/3 and IV/4: Sensors and Mapping from Space, Hanover (Germany) (pp. 27-30).
Singh, S., Bhardwaj, A., & Verma, V. K. (2020). Remote sensing and GIS based analysis of temporal land-use/land-cover and water quality changes in Harike wetland ecosystem, Punjab, India. Environmental Management, 262, 110355.
Thomas, J., Joseph, S., & Thrivikramji, K. P. (2018). Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers, 9(3), 893-906.
Vanacker, V., Ameijeiras-Mariño, Y., Schoonejans, J., Cornélis, J. T., Minella, J. P., Lamouline, F., Vermeire, M. L., Campforts, B., Robinet, J., Van de Broek, M., Delmelle. P., & Opfergelt, S. (2019). Land-use impacts on soil erosion and rejuvenation in Southern Brazil. Catena, 178, 256-266.
Wijaya, A. (2005). Application of multi-stage classification to detect illegal logging with the use of multi-source data. International Institute for Geo-Information Sience and Earth Observation, Enschede, The Netherlands.
Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Department of Agriculture. Science and Education Administration, No. 537.
Xiao, Yang, Guo, B., Lu, Y., Zhang, R., Zhang, D., Zhen, X., Chen, S., Wu, H., Wei, C., Yang, L., Zhang, Y., Zang, W., Huang, X., Sun, G., & Wang, Z. (2021). Spatial temporal evolution patterns of soil erosion in the Yellow River Basin from 1990 to 2015: impacts of natural factors and land-use change. Geomatics, Natural Hazards and Risk, 12(1), 103-122
Zare, M., Samani, A. N., Mohammady, M., Salmani, H., & Bazrafshan, J. (2017). Investigating effects of land-use change scenarios on soil erosion using CLUE-s and RUSLE models. environmental science and technology, 14(9), 1905-1918.
Zhang, Y., Zhang, X., Bi, Z., Yu, Y., Shi, P., Ren, L., & Shan, Z. (2020). The impact of land-use changes and erosion process on heavy metal distribution in the hilly area of the Loess Plateau, China. Science of The Total Environment, 718, 137305.
Zhen, L., Ishwaran, N., Luo, Q., Wei, Y., & Zhang, Q. (2020). Role and significance of restoration technologies for vulnerable ecosystems in building an ecological civilization in China. Environmental Development, 34, 100494.