Nutrient Recovery from Urban Municipal Sewage Sludge: Production of a Liquid Fertilizer and Investigation of its Physicochemical and Biological Properties

Document Type : Research Paper

Authors

1 Department of Water and Environmental Engineering, Faculty of Water, Niroo Research Institute (NRI), Isfahan, Iran

2 Department of Civil and Environmental Engineering, Daneshpajoohan Pishro Higher Education Institute (DHEI), Isfahan, Iran,

Abstract

Objective: The principles of a circular economy and sustainable development emphasize the critical need for effective waste management, particularly for urban wastewater sludge. Although often viewed as a hazardous pollutant, this sludge is a rich source of essential nutrients for plants, presenting a significant opportunity for conversion into a valuable biofertilizer. This research aimed to address this challenge by presenting a comprehensive laboratory-scale investigation.
Method: In this research, dewatered sludge from the Tiran municipal wastewater treatment plant was subjected to alkaline hydrolysis, which involved chemical digestion using a 0.25 M sodium hydroxide solution. Following a controlled digestion period, the mixture was centrifuged to separate the solid residue from the nutrient-rich liquid fraction. The resulting liquid fertilizer was thoroughly characterized to assess its agricultural potential by meticulously measuring key physicochemical parameters (pH, EC, TOC, N, P, K), as well as quantifying micronutrients, heavy metals, and indicator pathogens in both the raw sludge and the final product. Finally, using sulfuric acid to adjust the high pH and potassium sulfate to enrich the low potassium content, a post-treatment step was implemented to optimize the fertilizer's quality and create a balanced nutrient profile.
Results: The alkaline hydrolysis process proved highly effective, yielding a liquid fertilizer with high concentrations of phosphorus and organic carbon. These components are crucial for enhancing soil fertility, improving soil structure, and stimulating microbial activity. Although the initial potassium concentration was found to be below the optimal level for plant growth, our post-processing step successfully enriched it to the desired range, thus demonstrating the feasibility of producing a complete and balanced fertilizer. Another significant finding of this research was the low concentration of both microbial load and heavy metals. Consequently, the final product met the stringent U.S. Environmental Protection Agency (EPA) Class A standards for pathogen safety, thereby ensuring its suitability for unrestricted use in agricultural applications.
Conclusions: This study successfully demonstrated a sustainable and effective solution for transforming urban wastewater sludge into a value-added liquid fertilizer. The developed method not only provides a viable pathway for the recovery of valuable nutrients but also ensures the production of an environmentally safe and agriculturally beneficial product. This approach contributes significantly to the development of sustainable agriculture by closing the nutrient loop and offers a reproducible model for urban waste management systems seeking to transition towards more circular and resource-efficient practices. 

Keywords

Main Subjects


نامداری، مریم و اتابکی، محمدرضا. (1403). تولید و بررسی خصوصیات کود مایع از لجن بیولوژیکی فاضلاب شهری. مجله تحقیقات بهداشت محیط، 9(2)، 160-168. https://doi.org/10.22038/jreh.2023.66549.1528  
فائزی رازی، دادمهر؛ کنعانی، شهیر؛ اختیارزاده، زهره؛ امیرنژاد، رضا؛ حسین‌زاده، وحید؛ و یوسفی‌صدر، سینا. (1400). جامدات زیستی تصفیه‌خانه فاضلاب شهری – ویژگی‌ها و پایش. سازمان ملی استاندارد ایران، شماره 66922، چاپ اول، ICS: 13.060.30;13.030.020
 Alalayah, W., Demirbaş, A., & Edris, G. (2017). Sludge production from municipal wastewater treatment in sewage treatment plant. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39. https://doi.org/10.1080/15567036.2017.1283551
Aryampa, S., Stuetz, R., Fisher, R., Luo, J., & Wiedmann, T. (2025). Integrated recovery of nutrients during municipal wastewater treatment and biosolids management. Journal of Cleaner Production, 494, 144984. https://doi.org/ 10.1016/j.jclepro.2025.144984
Balkrishna, A., Kaushik, P., Singh, S., Agrahari, P., Kumar, B., Kumar, P., & Arya, V. (2025). Potential Use of Sewage Sludge as Fertilizer in Organic Farming. Cleaner Waste Systems, 10, 100245. https://doi.org/10.1016/ j.clwas.2025.100245
Botte, G., Donneys Victoria, D., Alvarez Pugliese, C. E., Adjei, J., Sahin, S., Wilson, N., Millerick, K., Hardberger, A., Furst, A., Hu, N., & Medford, A. (2024). Innovative Approach to Sustainable Fertilizer Production: Leveraging Electrically Assisted Conversion of Sewage Sludge for Nutrient Recovery. ACS Omega, 9. https://doi.org/10.1021/ acsomega.4c07926
Bratina, B., Sorgo, A., Kramberger, J., Ajdnik, U., Zemljič, L., Ekart, J., & Safaric, R. (2016). From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management. Journal of Environmental Management, 183. https://doi.org/10.1016/j.jenvman.2016.09.063
Chen, Y.-J., Wang, L.-P., & Babel, S. (2021). Sustainable Utilization of Sewage Sludge through the Synthesis of Liquid Fertilizer. Sustainability, 14, 387. https://doi.org/10.3390/su14010387
Chojnacka, K., Skrzypczak, D., Szopa, D., Izydorczyk, G., Moustakas, K., & Witek-Krowiak, A. (2023). Management of biological sewage sludge: Fertilizer nitrogen recovery as the solution to fertilizer crisis. Journal of Environmental Management, 326, 116602. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.116602
Dadrasnia, A., Muñoz, I., Hernandez, E., Uald Lamkaddam, I., Mora, M., Ponsá, S., Ahmed, M., Argelaguet, L., & Oatley-Radcliffe, D. (2021). Sustainable nutrient recovery from animal manure: A review of current best practice technology and the potential for freeze concentration. Journal of Cleaner Production, 315, 128106. https://doi.org/10.1016/j.jclepro.2021.128106.
Derco, J., Gulasova, P., Legan, M., Zakhar, R., & Gotvajn, A. (2024). Sustainability Strategies in Municipal Wastewater Treatment. Sustainability, 16, 9038. https://doi.org/10.3390/su16209038
Faezirazi, D.; Kanaani, Sh.; Ekhtiardzadeh, Z.; Hosseinzadeh, V. (1400). Municipal wastewater treatment plant biosolids- Specifications and Monitoring. National Standards Organization of Iran, No. 66922, First Edition. ICS: 13.060.30;13.030.020. [In Persian]
Ge, S. (2017). Cultivation of the Marine Macroalgae Chaetomorpha linum in Municipal Wastewater for Nutrient Recovery and Biomass Production. Environmental science & technology, 51, 3558–3566. https://doi.org/10.1021/ acs.est.6b06039
Goodarzi, H., Tehrani, M., Zadeh, S., Rezaei, H., Karimi, A., & Ostad-Ali-Askari, K. (2024). Investigation regarding assessment of potentially toxic elements (PTEs) contamination risk in Rasht city with emphasis on the two rivers, Goharroud and Zarjoub, Gilan province, Iran. Sustainable Water Resources Management, 10. https://doi.org/ 10.1007/s40899-023-01025-8
Grobelak, A., Calus-Makowska, K., Jasińska, A., Klimasz, M., Wypart-Pawul, A., Augustajtys, D., Baor, E., Sławczyk, D., & Kowalska, A. (2024). Environmental Impacts and Contaminants Management in Sewage Sludge-to-Energy and Fertilizer Technologies: Current Trends and Future Directions. Energies, 17, 4983. https://doi.org/10.3390/ en17194983
Hasan, M., Hasan, M. R., Khan, R., & Rashid, T. (2024). Sewage Sludge: Is It a Sustainable Fertilizer or a Source of Contaminants? In (pp. 101-131). https://doi.org/10.1007/978-3-031-58441-1_4
Junling, N., Lei, L., & Binguo, Z. (2011). Study on the characteristics and utilization of urban sewage sludge. https://doi.org/10.1109/CECNET.2011.5769440
Koushafar, M., & Fadaei Tehrani, M. (2024). The effect of vermicompost leachate and split root system of tomato on the growth and crop per drop. International Journal of Recycling of Organic Waste in Agriculture, 13(2). https://doi.org/doi.org/10.57647/j.ijrowa.2024.1302.23
Kumar, V., Khan, M. S., Ghosh, P., & Kumar, V. (2023). Municipal Wastewater Sludge as a Sustainable Bioresource in Developed Countries. In (pp. 51-68). https://doi.org/10.1201/9781003354765-5
Lovitt, R. B., Zacharof, M.-P., & Gerardo, M. (2012). Nutrient recovery from sludge using filtration systems.
Namdari, M., & Atabaki, M. R. (2023). Production and characterization of liquid fertilizer from biological sludge of municipal wastewater. Journal of Research in Environmental Health, 9(2), 160-168. https://doi.org/10.22038/ jreh.2023.66549.1528 [In Persian]
Pöykiö, R., Watkins, G., & Dahl, O. (2019). Characterisation of Municipal Sewage Sludge as a Soil Improver and a Fertilizer Product. Ecological Chemistry and Engineering S, 26, 547-557. https://doi.org/10.1515/eces-2019-0040
Shiba, N., & Freeman, N. (2016). Extraction and precipitation of phosphorus from sewage sludge. Waste Management, 60. https://doi.org/10.1016/j.wasman.2016.07.031
Srivastava, V., Vaish, B., Singh, A., & Singh, R. (2020). Nutrient recovery from municipal waste stream: status and prospects. In (pp. 265-297). https://doi.org/10.1016/B978-0-12-820730-7.00015-X
Sugurbekova, G., Nagyzbekkyzy, E., Sarsenova, A., Danlybayeva, G., Anuarbekova, S., Kudaibergenova, R., Frochot, C., Acherar, S., Zhatkanbayev, Y., & Moldagulova, N. (2023). Sewage Sludge Management and Application in the Form of Sustainable Fertilizer. Sustainability, 15, 6112. https://doi.org/10.3390/su15076112
Tang, Y.-F., Xie, H., Sun, J., Li, X., Zhang, Y., & Dai, X. (2022). Alkaline Thermal Hydrolysis of Sewage Sludge to Produce High-Quality Liquid Fertilizer Rich in Nitrogen-containing Plant-growth-promoting Nutrients and Biostimulants. Water Research, 211, 118036. https://doi.org/10.1016/j.watres.2021.118036
Tehrani, M., & Besalatpour, A. A. (2024). A combined landfarming-phytoremediation method to enhance remediation of mixed persistent contaminants. Environmental Science and Pollution Research, 31, 1-12. https://doi.org/10.1007/ s11356-024-33606-1
Wang, Y., Zheng, S.-J., Pei, L.-Y., Ke, L., Peng, D.-C., & Xia, S. (2014). Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system. Environmental Technology, 35. https://doi.org/10.1080/ 09593330.2014.920048
Zaib, M., Zubair, M., Aryan, M., Abdullah, M., Manzoor, S., Masood, F., & Saeed, S. (2023). A Review on Challenges and Opportunities of Fertilizer Use Efficiency and Their Role in Sustainable Agriculture with Future Prospects and Recommendations. 1-14.
Zhou, X., Zhang, B., & Lingmei, L. (2024). From Waste to Resource: Assessing the Feasibility of Municipal Sludge as a Fertilizer from a Soil and Microbial Perspective. Chemical Engineering Journal Advances, 19, 100630. https://doi.org/10.1016/j.ceja.2024.100630