Optical Monitoring of Coastal-Marine Environments through Colored Dissolved Organic Matter (CDOM) (Southern Pars Region Case Study)

Document Type : Research Paper

Authors

1 Department of Environmental Science and Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Mazandaran Province, Iran

2 Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Mazandaran Province, Iran

3 Department of Environment, Marine environment and wetlands, Tehran, Iran

Abstract

Objective: Colored Dissolved Organic Matter (CDOM) of terrestrial origin plays a crucial role in the biogeochemical cycles of carbon, nitrogen, and phosphorus in coastal regions. This component significantly influences water quality and ecosystem services by affecting light penetration. Despite the importance of CDOM in coastal ecosystems, most global studies have primarily relied on remote sensing techniques due to their efficiency in large-scale observations. However, remote sensing alone cannot fully capture the spatial and temporal variations of CDOM, making in situ field measurements essential for accurate assessments. In Iran, continuous and systematic monitoring of CDOM in coastal waters remains largely unexplored, leaving a significant knowledge gap regarding its seasonal dynamics and anthropogenic influences.
Method: This study aimed to address this gap by conducting field sampling using a conductivity, temperature, and depth (CTD) device to measure CDOM concentrations in the industrial zone of South Pars and Nayband Marine National Park. To ensure a comprehensive analysis, the study area was divided into four distinct sections: Nayband, the industrial zone, Bonood, and mangrove forests. Each section was selected based on its ecological significance and potential exposure to different sources of CDOM. A total of 144 sampling stations were surveyed across two seasonal periods: winter 2022–2023 and spring 2023. Water samples were collected from various depths to examine vertical distribution patterns of CDOM in addition to spatial variations. The collected data were analyzed to determine the extent of CDOM fluctuations between different regions and seasons.
Results: The findings revealed that CDOM concentrations varied significantly across different locations and seasons. The highest mean CDOM concentration was observed in the mangrove forests, reaching 6.27 ppb in spring and 3.84 ppb in winter. Similarly, in Nayband, CDOM concentrations were recorded at 1.35 ppb in spring and 7.55 ppb in winter. Additionally, the data indicated that CDOM levels were generally higher in coastal areas and surface water layers, which may be attributed to increased organic matter input from terrestrial sources, such as riverine discharge and coastal vegetation. The contrast between winter and spring concentrations suggests seasonal variations in CDOM production and degradation processes.
Conclusions: Measuring CDOM concentrations in Bonood, this study also explored potential sources and driving factors behind its variability. The results indicate that anthropogenic activities, particularly industrial and urban wastewater discharge, play a crucial role in shaping CDOM levels in coastal waters. Additionally, submarine groundwater discharge (SGD) was identified as a significant contributor, particularly in regions with high CDOM concentrations, such as Nayband and the mangrove forests. The interaction between natural and human-induced factors highlights the complexity of CDOM dynamics in coastal environments. Given the observed seasonal and spatial variations, continuous monitoring of CDOM is essential for understanding long-term trends and their implications for water quality management.

Keywords

Main Subjects


Ahmadi, B., Gholamalifard, M., Ghasempouri, S. M., & Kutser, T. (2025a). Comparative analysis of k-nearest neighbors distance metrics for retrieving coastal water quality based on concurrent in situ and satellite observations. Marine Pollution Bulletin, 214, 117816. https://doi.org/10.1016/j.marpolbul.2025.117816
Ahmadi, B., Gholamalifard, M., Ghasempouri, S. M., & Kutser, T. (2025b). Comparative assessment of machine learning algorithms for retrieving colored dissolved organic matter (CDOM) from Sentinel-2/MSI images in the coastal waters of the Persian Gulf. Ecological Informatics, 103171. https://doi.org/10.1016/j.ecoinf.2025.103171
Ahmadi, B., Gholamalifard, M., Kutser, T., Vignudelli, S., & Kostianoy, A. (2020). Spatio-temporal variability in bio-optical properties of the southern caspian sea: A historic analysis of ocean color data. Remote Sensing, 12(23), 3975. https://doi.org/10.3390/rs12233975
Ahmadi, B., Gholamalifard, M., Naghdi, M., & Kostianoy, A. G. (2024). Improvement of bio-optical characteristics of seawater in the Southern Caspian Sea Basin triggered by COVID-19 lockdowns: Insights from remote sensing data. Ecologica Montenegrina, 76, 133-153. https://doi.org/10.37828/em.2024.76.8
Archibald, J. P., Santos, I. R., & Davis, K. L. (2019). Diel versus tidal cycles of chromophoric dissolved organic matter (CDOM) and radon in a coral reef in the Great Barrier Reef. Regional studies in marine science, 29, 100659. https://doi.org/10.1016/j.rsma.2019.100659
Bai, L., Liu, X., Hua, K., Deng, J., Wang, C., Jiang, H., & Wang, A. (2022). Seasonal variations of fluorescent dissolved organic matter control estrone biodegradation potential in eutrophic waters affected by allochthonous and autochthonous sources. Journal of Hydrology, 612, 128227 https://doi.org/10.1016/j.jhydrol.2022.128227.
Belkin, N., Rahav, E., Elifantz, H., Kress, N., & Berman‐Frank, I. (2015). Enhanced salinities, as a proxy of seawater desalination discharges, impact coastal microbial communities of the eastern M editerranean S Ea. Environmental microbiology, 17(10), 4105-4120. https://doi.org/10.1111/1462-2920.12979.
Bhattacharya, R., & Osburn, C. L. (2020). Spatial patterns in dissolved organic matter composition controlled by watershed characteristics in a coastal river network: The Neuse River Basin, USA. Water research, 169, 115248. https://doi.org/10.1016/j.watres.2019.115248
Bigharaz, M., Almasi, Z., & Nasrabdi, M.(2015). Exploring and evaluating health, safety and environment conditions of oil industry staff in southern pars special economic energy zone as a result of oil, gas, and petrochemical industry development. Journal of Biodiversity and Environmental Sciences, 7, 202-213. https://innspub.net/exploring-and-evaluating-health-safety-and-environment-conditions-of-oil-industry-staff-in-southern-pars-special-economic-energy-zone-as-a-result-of-oil-gas-and-petrochemical-industry-development/
Blanco, A. C., Watanabe, A., Nadaoka, K., Motooka, S., Herrera, E. C., & Yamamoto, T. (2011). Estimation of nearshore groundwater discharge and its potential effects on a fringing coral reef. Marine Pollution Bulletin, 62(4), 770-785. https://doi.org/10.1016/j.marpolbul.2011.01.005
Blazevic, A., Orlowska, E., Kandioller, W., Jirsa, F., Keppler, B. K., Tafili‐Kryeziu, M., Linert, W., Krachler, R. F., Krachler, R., & Rompel, A. (2016). Photoreduction of terrigenous Fe‐humic substances leads to bioavailable iron in oceans. Angewandte Chemie, 128(22), 6527-6532. https://doi.org/10.1002/ange.201600852
Boehm, P. D., & Quinn, J. G. (1973). Solubilization of hydrocarbons by the dissolved organic matter in sea water. Geochimica et Cosmochimica Acta, 37(11), 2459-2477. https://doi.org/10.1016/0016-7037(73)90292-5
Bouillon, S., Frankignoulle, M., Dehairs, F., Velimirov, B., Eiler, A., Abril, G., Etcheber, H., & Borges, A. V. (2003). Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India) during pre‐monsoon: The local impact of extensive mangrove forests. Global biogeochemical cycles, 17(4). https://doi.org/10.1029/2002GB002026
Bushaw, K. L., Zepp, R. G., Tarr, M. A., Schulz-Jander, D., Bourbonniere, R. A., Hodson, R. E., Miller, W. L., Bronk, D. A., & Moran, M. A. (1996). Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature, 381(6581), 404-407. https://doi.org/10.1038/381404a0
Butturini, A., Herzsprung, P., Lechtenfeld, O., Alcorlo, P., Benaiges-Fernandez, R., Berlanga, M., Boadella, J., Campillo, Z. F., Gomez, R., & Sanchez-Montoya, M. d. M. (2022). Origin, accumulation and fate of dissolved organic matter in an extreme hypersaline shallow lake. Water research, 221, 118727. https://doi.org/10.1016/j.watres.2022.118727
Cao, W., Guan, Q., Li, Y., Wang, M., & Liu, B. (2017). The contribution of denitrification and anaerobic ammonium oxidation to N 2 production in mangrove sediments in Southeast China. Journal of Soils and Sediments, 17, 1767-1776. https://doi.org/10.1007/s11368-017-1653-0
Cawley, K. M., Ding, Y., Fourqurean, J., & Jaffé, R. (2012). Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: a preliminary study using optical properties and stable carbon isotopes. Marine and Freshwater Research, 63(11), 1098-1107. https://doi.org/10.1071/MF12028
Charette, M. A., Sholkovitz, E. R., & Hansel, C. M. (2005). Trace element cycling in a subterranean estuary: Part 1. Geochemistry of the permeable sediments. Geochimica et Cosmochimica Acta, 69(8), 2095-2109. https://doi.org/10.1016/j.gca.2005.10.019
Charpy, L., Dufour, P., & Garcia, N. (1997). Particulate organic matter in sixteen Tuamotu atoll lagoons (French Polynesia). Marine Ecology Progress Series, 151, 55-65. https://doi.org/10.3354/meps151055
Chen, J., & Zhu, W. (2022). Consistency evaluation of landsat-7 and landsat-8 for improved monitoring of colored dissolved organic matter in complex water. Geocarto International, 37(1), 91-102. https://doi.org/10.1080/10106049.2020.1734872
Coble, P. G., Del Castillo, C. E., & Avril, B. (1998). Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Research Part II: Topical Studies in Oceanography, 45(10-11), 2195-2223. https://doi.org/10.1016/S0967-0645(98)00068-X
Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E (2009). Controlling eutrophication: nitrogen and phosphorus. In (Vol. 323, pp. 1014-1015): American Association for the Advancement of Science. DOI: 10.1126/science.1167755
D’Sa, E. J., Kim, H.-C., Ha, S.-Y., & Joshi, I. (2021). Ross Sea dissolved organic matter optical properties during an Austral summer: Biophysical influences. Frontiers in Marine Science, 8, 749096. https://doi.org/10.3389/ fmars.2021.749096
Das, S., Hazra, S., Lotlikar, A. A., Das, I., Giri, S., Chanda, A., Akhand, A., Maity, S., & Kumar, T. S. (2016). Delineating the relationship between chromophoric dissolved organic matter (CDOM) variability and biogeochemical parameters in a shallow continental shelf. Egyptian Journal of Aquatic Research, 42(3), 241-248. https://doi.org/10.1016/j.ejar.2016.08.001
Dittmar, T., Hertkorn, N., Kattner, G., & Lara, R. J. (2006). Mangroves, a major source of dissolved organic carbon to the oceans. Global biogeochemical cycles, 20 (1). https://doi.org/10.1029/2005GB002570
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., & Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature climate change, 3(11), 961-968. https://doi.org/10.1038/nclimate1970
Dupouy, C., Röttgers, R., Tedetti, M., Frouin, R., Lantoine, F., Rodier, M., Martias, C., & Goutx, M. (2020). Impact of contrasted weather conditions on CDOM absorption/fluorescence and biogeochemistry in the eastern lagoon of New Caledonia. Frontiers in Earth Science, 8, 54. https://doi.org/10.3389/feart.2020.00054
Farjalla, V. F., Marinho, C. C., Faria, B. M., Amado, A. M., Esteves, F. d. A., Bozelli, R. L., & Giroldo, D. (2009). Synergy of fresh and accumulated organic matter to bacterial growth. Microbial Ecology, 57, 657-666. https://doi.org/10.1007/s00248-008-9466-8
Fichot, C. G., & Benner, R. (2012). The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river‐influenced ocean margins. Limnology and Oceanography, 57(5), 1453-1466. https://doi.org/10.4319/lo.2012.57.5.1453
Fonte, E. S., Amado, A. M., Meirelles-Pereira, F., Esteves, F. A., Rosado, A. S., & Farjalla, V. F. (2013). The combination of different carbon sources enhances bacterial growth efficiency in aquatic ecosystems. Microbial Ecology, 66, 871-878. https://doi.org/10.1007/s00248-013-0277-1
Froelich, P. N., Klinkhammer, G., Bender, M. L., Luedtke, N., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., & Maynard, V. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43(7), 1075-1090. https://doi.org/10.1016/0016-7037(79)90095-4
García–Nieto, P. J., García–Gonzalo, E., Fernández, J. R. A., & Muñiz, C. D. (2024). Forecast of chlorophyll-a concentration as an indicator of phytoplankton biomass in El Val reservoir by utilizing various machine learning techniques: a case study in Ebro river basin, Spain. Journal of Hydrology, 639, 131639. https://doi.org/10.1016/j.jhydrol.2024.131639
Haas, A. F., Nelson, C. E., Rohwer, F., Wegley-Kelly, L., Quistad, S. D., Carlson, C. A., Leichter, J. J., Hatay, M., & Smith, J. E. (2013). Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ, 1, e108. https://doi.org/10.7717/peerj.108
Haas, A. F., Nelson, C. E., Wegley Kelly, L., Carlson, C. A., Rohwer, F., Leichter, J. J., Wyatt, A., & Smith, J. E. (2011). Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PloS one, 6(11), e27973. https://doi.org/10.1371/journal.pone.0027973
Helms, J. R., Mao, J., Stubbins, A., Schmidt-Rohr, K., Spencer, R. G., Hernes, P. J., & Mopper, K. (2014). Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching. Aquatic sciences, 76, 353-373. https://doi.org/10.1007/s00027-014-0340-0
Holloway, C. J., Santos, I. R., Tait, D. R., Sanders, C. J., Rose, A. L., Schnetger, B., Brumsack, H.-J., Macklin, P. A., Sippo, J. Z., & Maher, D. T. (2016). Manganese and iron release from mangrove porewaters: a significant component of oceanic budgets? Marine Chemistry, 184, 43-52. https://doi.org/10.1016/j.marchem.2016.05.013
Hwang, D.-W., Lee, I.-S., Choi, M., & Kim, T.-H. (2016). Estimating the input of submarine groundwater discharge (SGD) and SGD-derived nutrients in Geoje Bay, Korea using 222Rn-Si mass balance model. Marine Pollution Bulletin, 110(1), 119-126. https://doi.org/10.1016/j.marpolbul.2016.06.073
Jokinen, S. A., Jilbert, T., Tiihonen-Filppula, R., & Koho, K. (2020). Terrestrial organic matter input drives sedimentary trace metal sequestration in a human-impacted boreal estuary. Science of the total environment, 717, 137047. https://doi.org/10.1016/j.scitotenv.2020.137047
Khozeymehnezhad, H., & Nazeri Tahroudi, M. (2019). Annual and seasonal distribution pattern of rainfall in Iran and neighboring regions. Arabian Journal of Geosciences, 12, 1-11. https://doi.org/10.1007/s12517-019-4442-9
Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: a review. Aquatic botany, 89(2), 201-219. https://doi.org/10.1016/j.aquabot.2007.12.005
Larkum, A., Kennedy, I., & Muller, W. (1988). Nitrogen fixation on a coral reef. Marine Biology, 98, 143-155. https://doi.org/10.1007/BF00392669
Letscher, R. T., Knapp, A. N., James, A. K., Carlson, C. A., Santoro, A. E., & Hansell, D. A. (2015). Microbial community composition and nitrogen availability influence DOC remineralization in the South Pacific Gyre. Marine Chemistry, 177, 325-334. https://doi.org/10.1016/j.marchem.2015.06.024
Liu, D., Du, Y., Yu, S., Luo, J., & Duan, H. (2020). Human activities determine quantity and composition of dissolved organic matter in lakes along the Yangtze River. Water research, 168, 115132. https://doi.org/10.1016/ j.watres.2019.115132
Manuel, A., Blanco, A., & Cabrera, O. (2021). Mapping Coloured Dissolved Organic Matter in Manila Bay Using SENTINEL-3 and Wasi. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 46, 207-212. https://doi.org/10.5194/isprs-archives-XLVI-4-W6-2021-207-2021
Marcelli, M., Piermattei, V., Madonia, A., & Mainardi, U. (2014). Design and application of new low-cost instruments for marine environmental research. Sensors, 14(12), 23348-23364. https://doi.org/10.3390/s141223348
Martias, C., Tedetti, M., Lantoine, F., Jamet, L., & Dupouy, C. (2018). Characterization and sources of colored dissolved organic matter in a coral reef ecosystem subject to ultramafic erosion pressure (New Caledonia, Southwest Pacific). Science of the total environment, 616, 438-452. https://doi.org/10.1016/j.scitotenv. 2017.10.261
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46(1), 38-48. https://doi.org/10.4319/lo.2001.46.1.0038
Minu, P., Lotliker, A. A., Shaju, S., SanthoshKumar, B., Ashraf, P. M., & Meenakumari, B. (2014). Effect of optically active substances and atmospheric correction schemes on remote-sensing reflectance at a coastal site off Kochi. International journal of remote sensing, 35(14), 5434-5447. https://doi.org/10.1080/01431161.2014.926420
Mohammadpour, G., & Pirasteh, S. (2021). Interference of CDOM in remote sensing of suspended particulate matter (SPM) based on MODIS in the Persian Gulf and Oman Sea. Marine Pollution Bulletin, 173, 113104. https://doi.org/10.1016/j.marpolbul.2021.113104
Moore, W. S. (2010). The effect of submarine groundwater discharge on the ocean. Annual review of marine science, 2, 59-88. https://doi.org/10.1146/annurev-marine-120308-081019
Mori, C., Santos, I. R., Brumsack, H.-J., Schnetger, B., Dittmar, T., & Seidel, M. (2019). Non-conservative behavior of dissolved organic matter and trace metals (Mn, Fe, Ba) driven by porewater exchange in a subtropical mangrove-estuary. Frontiers in Marine Science, 6, 481. https://doi.org/10.3389/fmars.2019.00481
Nelson, C. E., Donahue, M. J., Dulaiova, H., Goldberg, S. J., La Valle, F. F., Lubarsky, K., Miyano, J., Richardson, C., Silbiger, N. J., & Thomas, F. I. (2015). Fluorescent dissolved organic matter as a multivariate biogeochemical tracer of submarine groundwater discharge in coral reef ecosystems. Marine Chemistry, 177, 232-243. https://doi.org/10.1016/j.marchem.2015.06.026
Nieto-Cid, M., Álvarez-Salgado, X. A., & Pérez, F. F. (2006). Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnology and Oceanography, 51(3), 1391-1400. https://doi.org/10.4319/lo.2006.51.3.1391
NO, G., MANUALS, I., & NO, G. (2004). Submarine groundwater discharge.
Osburn, C. L., Retamal, L., & Vincent, W. F. (2009). Photoreactivity of chromophoric dissolved organic matter transported by the Mackenzie River to the Beaufort Sea. Marine Chemistry, 115 (1-2), 10-20. https://doi.org/10.1016/j.marchem.2009.05.003
Reading, M. J., Santos, I. R., Maher, D. T., Jeffrey, L. C., & Tait, D. R. (2017). Shifting nitrous oxide source/sink behaviour in a subtropical estuary revealed by automated time series observations. Estuarine, Coastal and Shelf Science, 194, 66-76. https://doi.org/10.1016/j.ecss.2017.05.017
Russell, B. J., Dierssen, H. M., & Hochberg, E. J. (2019). Water column optical properties of Pacific coral reefs across geomorphic zones and in comparison to offshore waters. Remote Sensing, 11(15), 1757. https://doi.org/10.3390/ rs11151757
Russoniello, C. J., Konikow, L. F., Kroeger, K. D., Fernandez, C., Andres, A. S., & Michael, H. A. (2016). Hydrogeologic controls on groundwater discharge and nitrogen loads in a coastal watershed. Journal of Hydrology, 538, 783-793. https://doi.org/10.1016/j.jhydrol.2016.05.013
Samani, A. N., Farzin, M., Rahmati, O., Feiznia, S., Kazemi, G. A., Foody, G., & Melesse, A. M. (2021). Scrutinizing relationships between submarine groundwater discharge and upstream areas using thermal remote sensing: A case study in the northern Persian gulf. Remote Sensing, 13(3), 358. https://doi.org/10.3390/rs13030358
Sandrin, T. R., & Maier, R. M. (2003). Impact of metals on the biodegradation of organic pollutants. Environmental Health Perspectives, 111(8), 1093-1101. https://doi.org/10.1289/ehp.5840
Shao, T., Liang, X., Zhuang, D., Zheng, K., & Wang, T. (2023). Seasonal variations in CDOM characteristics and effects of environmental factors in coastal rivers, Northeast China. Environmental Science and Pollution Research, 30(11), 29052-29064. https://doi.org/10.1007/s11356-022-24165-4
Shao, T., Song, K., Du, J., Zhao, Y., Ding, Z., Guan, Y., Liu, L., & Zhang, B. (2016). Seasonal variations of CDOM optical properties in rivers across the Liaohe Delta. Wetlands, 36, 181-192. https://doi.org/10.1007/s13157-014-0622-2
Sippo, J. Z., Maher, D. T., Tait, D. R., Holloway, C., & Santos, I. R. (2016). Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect. Global biogeochemical cycles, 30(5), 753-766. https://doi.org/10.1002/2015GB005324
Song, K., Shang, Y., Wen, Z., Jacinthe, P.-A., Liu, G., Lyu, L., & Fang, C. (2019). Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis. Water research, 150, 403-417. https://doi.org/10.1016/j.watres.2018.12.004
Staehr, P. A., Testa, J., & Carstensen, J. (2017). Decadal changes in water quality and net productivity of a shallow Danish estuary following significant nutrient reductions. Estuaries and Coasts, 40, 63-79. https://doi.org/10.1007/s12237-016-0117-x
Statham, P. J. (2012). Nutrients in estuaries—An overview and the potential impacts of climate change. Science of the total environment, 434, 213-227. https://doi.org/10.1016/j.scitotenv.2011.09.088
Stedmon, C. A., Markager, S., Søndergaard, M., Vang, T., Laubel, A., Borch, N. H., & Windelin, A. (2006). Dissolved organic matter (DOM) export to a temperate estuary: seasonal variations and implications of land use. Estuaries and Coasts, 29, 388-400. https://doi.org/10.1007/BF02784988
Stedmon, C. A., & Nelson, N. B. (2015). The optical properties of DOM in the ocean. In Biogeochemistry of marine dissolved organic matter (pp. 481-508). Elsevier. https://doi.org/10.1016/B978-0-12-405940-5.00010-8
Stoddart, D. R. (1969). Ecology and morphology of recent coral reefs. Biological Reviews, 44(4), 433-498. https://doi.org/10.1111/j.1469-185X.1969.tb00609.x
Suryaputra, I. G., Santos, I. R., Huettel, M., Burnett, W., & Dittmar, T. (2015). Non-conservative behavior of fluorescent dissolved organic matter (FDOM) within a subterranean estuary. Continental Shelf Research, 110, 183-190. https://doi.org/10.1016/j.csr.2015.10.011
Tedetti, M., Cuet, P., Guigue, C., & Goutx, M. (2011). Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean) using multi-dimensional fluorescence spectroscopy. Science of the total environment, 409(11), 2198-2210. https://doi.org/10.1016/ j.scitotenv.2011.01.058
Tzortziou, M., Neale, P. J., Megonigal, J. P., Pow, C. L., & Butterworth, M. (2011). Spatial gradients in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary. Marine Ecology Progress Series, 426, 41-56. https://doi.org/10.3354/meps09017
Tzortziou, M., Zeri, C., Dimitriou, E., Ding, Y., Jaffé, R., Anagnostou, E., Pitta, E., & Mentzafou, A. (2015). Colored dissolved organic matter dynamics and anthropogenic influences in a major transboundary river and its coastal wetland. Limnology and Oceanography, 60 (4), 1222-1240. https://doi.org/10.1002/lno.10092
Wang, H., Zhang, J., Li, Z., Shi, B., Li, S., & Huang, H. (2024). The new fate of MCLR revealed by dialysis equilibrium and theoretical calculations: Influence from DOM and Fe (II)/Mn (II). Journal of Environmental Chemical Engineering, 12 (6), 114671. https://doi.org/10.1016/j.jece.2024.114671
Wen, Z., Song, K., Zhao, Y., Du, J., & Ma, J. (2016). Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China. Hydrology and Earth System Sciences, 20 (2),787-801. https://doi.org/10.5194/hess-20-787-2016
Weng, L., Temminghoff, E. J., Lofts, S., Tipping, E., & Van Riemsdijk, W. H. (2002). Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environmental science & technology, 36(22), 4804-4810. https://doi.org/10.1021/es0200084
Wiebe, W., Johannes, R., & Webb, K. (1975). Nitrogen fixation in a coral reef community. Science, 188(4185), 257-259. DOI: 10.1126/science.188.4185.257
Yamashita, Y., Tsukasaki, A., Nishida, T., & Tanoue, E. (2007). Vertical and horizontal distribution of fluorescent dissolved organic matter in the Southern Ocean. Marine Chemistry, 106(3-4), 498-509. https://doi.org/10.1016/ j.marchem.2007.05.004
Yan, L., Xie, X., Peng, K., Wang, N., Zhang, Y., Deng, Y., Gan, Y., Li, Q., & Zhang, Y. (2021). Sources and compositional characterization of chromophoric dissolved organic matter in a Hainan tropical mangrove-estuary. Journal of Hydrology, 600, 126572. https://doi.org/10.1016/j.jhydrol.2021.126572
Zepp, R. G., Shank, G. C., Stabenau, E., Patterson, K. W., Cyterski, M., Fisher, W., Bartels, E., & Anderson, S. L. (2008). Spatial and temporal variability of solar ultraviolet exposure of coral assemblages in the Florida Keys: Importance of colored dissolved organic matter. Limnology and Oceanography, 53(5), 1909-1922. https://doi.org/10.4319/lo.2008.53.5.1909
Zhao, Y., Song, K., Wen, Z., Fang, C., Shang, Y., & Lv, L. (2017). Evaluation of CDOM sources and their links with water quality in the lakes of Northeast China using fluorescence spectroscopy. Journal of Hydrology, 550, 80-91. https://doi.org/10.1016/j.jhydrol.2017.04.027
Zhou, Y., Jeppesen, E., Zhang, Y., Niu, C., Shi, K., Liu, X., Zhu, G., & Qin, B. (2015). Chromophoric dissolved organic matter of black waters in a highly eutrophic Chinese lake: freshly produced from algal scums? Journal of Hazardous Materials, 299, 222-230. https://doi.org/10.1016/j.jhazmat.2015.06.024