Habitat Management of Mugger Crocodile (Crocodylus palustris) through Regional- Scale Niche Modeling for Practical Conservation Planning

Document Type : Research Paper

Authors

1 ‎Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol‎, ‎Zabol, Iran

2 ‎Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan ‎University of Agricultural Sciences and Natural Resources, Gorgan, Iran‎

Abstract

Objective: Macro-environmental variables influence the distribution of species on a regional scale, and bioclimatic variables are the most important among them. The mugger crocodile (Crocodylus palustris), which is a keystone species and the only crocodile in Iran, needs freshwater habitats to survive in regions with low precipitation. Also, every temperature fluctuation in the nest location impacts the sex ratio of its offspring. Consequently, the continuity of survival of this cold-blooded species is fundamentally influenced by climatic conditions rather than other ecological conditions on a regional scale. Therefore, this study was conducted on habitat modeling of the mugger crocodile using historical bioclimatic variables on a regional scale.
Methods: In the present study, habitat suitability modeling for the mugger crocodile was conducted using maximum entropy modeling (MaxEnt) and bioclimatic variables extracted from the KGClim_V1 climate model database. Bioclimatic variables were screened based on their correlation and the variability of each dataset, as assessed through standard deviation (SD), ultimately leading to the selection of seven from an initial dataset of twelve variables. Using species presence data as the dependent and bioclimatic variables as independent variables, the MaxEnt model was executed with 15 repetitions to identify potentially suitable areas for the species at regional scale based on the average results from the repetitions.
Results: The modeling results indicated that the highly suitable habitat areas were located near the observation points of the species. This finding reflected a significant gain associated with a high area under the curve (AUC) value of 0.938. The jackknife test identified the most effective climatic variables, including PWM, PWMwint, and Tavg. According to the logarithmic response curves of this species to rainfall bioclimatic variables, suitable habitat areas were predicted to be in regions with low rainfall. By comparing the results with those of other studies, it was concluded that different scales of biological, ecological, geographical, and human factors influence the species distribution. Therefore, predicting species distribution across multiple spatial scales is essential for a more accurate valuation of the relationships among these variables.
Conclusions: The findings of this study showed the necessity of integrated watershed management, especially in upstream areas, to ensure the survival of mugger crocodile downstream. Accordingly, a hierarchical modeling approach was recommended for future studies utilizing environmental variables at different scales. This approach is based on modeling macro factors separately from local-scale influences. In this context, micro and macro-scale studies are both important; however, their integration may pose problems because of inconsistency in spatial resolution and the scale of their effect on the species.

Keywords

Main Subjects


Abell, R. (2002). Conservation biology for the biodiversity crisis: a freshwater follow-up. Conservation Biology, 16(5), 1435-1437. https://doi.org/10.1046/j.1523-1739.2002.01532.x
Behrouzirad, B., Abtin, E., Hemati, T., Mohammadi, H., & Erfani, M. (2009). Survey of Mugger (Crocodylus palustris) habitat by using Habitat Suitability Index (HIS) Method along Sarbaz River (Sistan & Baluchistan province). Animal Environment Journal, 1(4), 45-56. https://www.aejournal.ir/index.php/AEJ/article/view/586 (In Persian).
Carrizo, S. F., Smith, K. G., & Darwall, W. R. T. (2013). Progress towards a global assessment of the status of freshwater fishes (P isces) for the IUCN R ed L ist: application to conservation programmes in zoos and aquariums. International Zoo Yearbook, 47(1), 46-64. https://doi.org/10.1111/izy.12019
Chang, M. S., Gachal, G. S., Qadri, A. H., Memon, K. H., Sheikh, M. Y., & Nawaz, R. (2015). Distribution, population status and threats of marsh crocodiles in Chotiari wetland complex Sanghar, Sindh-Pakistan. Biharean Biologist, 9(1), 22-28. https://api.semanticscholar.org/CorpusID:54764767
Cui, D., Liang, S., Wang, D., & Liu, Z. (2021). A 1-km global dataset of historical (1979–2017) and future (2020–2100) Köppen-Geiger climate classification and bioclimatic variables. Earth System Science Data Discussions, 2021, 1-33. https://doi.org/10.5194/essd2021-53
Cushman, S. A., & Wasserman, T. N. (2018). Landscape applications of machine learning: comparing random forests and logistic regression in multi-scale optimized predictive modeling of American marten occurrence in northern Idaho, USA. Machine learning for ecology and sustainable natural resource management, 185-203. https://doi.org/10.1007/978-3-319-96978-7_9
De Marco, P., & Nóbrega, C. C. (2018). Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PloS one, 13(9), e0202403. https://doi.org/10.1371/journal.pone.0202403
Domisch, S., Araújo, M. B., Bonada, N., Pauls, S. U., Jähnig, S. C., & Haase, P. (2013). Modelling distribution in E uropean stream macroinvertebrates under future climates. Global Change Biology, 19(3), 752-762. https://doi.org/ 10.1111/gcb.12107
Duan, R. Y., Kong, X. Q., Huang, M. Y., Fan, W. Y., & Wang, Z. G. (2014). The predictive performance and stability of six species distribution models. PloS one, 9(11), e112764. https://doi.org/10.1371/journal.pone.0112764
Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S., & Zimmermann, N.E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
Farashi, A., & Erfani, M. (2018). Modeling of habitat suitability of Asiatic black bear (Ursus thibetanus gedrosianus) in Iran in future. Acta Ecologica Sinica, 38(1), 9-14. https://doi.org/10.1016/j.chnaes.2017.07.003
Fuller, T., Sánchez-Cordero, V., Illoldi-Rangel, P., Linaje, M., & Sarkar, S. (2007). The cost of postponing biodiversity conservation in Mexico. Biological Conservation, 134(4), 593-600. https://doi.org/10.1016/j.biocon.2006.08.028
Gidebo, H. B. (2023). Linking livelihood and biodiversity conservation in protected areas: Community based tourism development perspective from developing country. Tourism and Hospitality Research, 23(3), 361-375. https://doi.org/10.1177/14673584221102699
González, E. J., Martínez‐López, M., Morales‐Garduza, M. A., García‐Morales, R., Charruau, P., & Gallardo‐Cruz, J. A. (2019). The sex‐determination pattern in crocodilians: A systematic review of three decades of research. Journal of Animal Ecology, 88(9), 1417-1427. https://doi.org/10.1111/1365-2656.13037
Grigg, G. and Kipshner (2015): Biology and evolution of crocodylians. Csiro Publishing, Clayton.‎ Comstock Publishing Associates a division of Cornell University Press Ithaca and london. p ‏‎627. ‎ https://doi.org/10.1086/686861
Guerrero, A. M., Mcallister, R. R., Corcoran, J., & Wilson, K. A. (2013). Scale mismatches, conservation planning, and the value of social‐network analyses. Conservation biology, 27(1), 35-44. https://doi.org/10.1111/j.1523-1739.2012. 01964.x
Guisan, A., Edwards Jr, T. C., & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological modelling, 157(2-3), 89-100. https://doi.org/10.1016/S0304-3800(02)00204-1
Heydari, N., Ebrahim Tehrani, M., Hosseini, M. R., Mohammadpour, O., Jan Parvar, H., & Ali Hosseini, A. A. (2022). Population survey and census of marsh crocodile, Crocodylus palustris in SE Iran. Biodiversity and Animal Taxonomy, 2(1), 156-163. https://doi.org/10.22126/jbat.2022.8120.1025 (In Persian).
Hijmans, R. J. (2012). Cross‐validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology, 93(3), 679-688. https://doi.org/10.1890/11-0826.1
Ihlow, F., Bonke, R., Hartmann, T., Geissler, P., Behler, N., & Rödder, D. (2015). Habitat suitability, coverage by protected areas and population connectivity for the Siamese crocodile Crocodylus siamensis Schneider, 1801. Aquatic
Conservation: Marine and Freshwater Ecosystems, 25(4), 544-554. https://doi.org/10.1002/aqc.2473
Klaassen, B., & Broekhuis, F. (2018). Living on the edge: Multiscale habitat selection by cheetahs in a human‐wildlife landscape. Ecology and evolution, 8(15), 7611-7623. https://doi.org/10.1002/ece3.4269
Lambert, C., & Virgili, A. (2023). Data stochasticity and model parametrisation impact the performance of species distribution models: insights from a simulation study. Peer Community Journal, 3. https://doi.org/10.24072/pcjournal. 263
 
Linke, S., Turak, E., & Nel, J. (2011). Freshwater conservation planning: the case for systematic approaches. Freshwater Biology, 56(1), 6-20. https://doi.org/10.1111/j.1365-2427.2010.02456.x
Liu, Q., Liu, H., Cui, X., Peng, J., Wang, X., Shen, L., ... & Li, X. (2024). Predicting the Population Size and Potential Habitat Distribution of Moschus berezovskii in Chongqing Based on the MaxEnt Model. Forests (19994907), 15(8). p1449. https://doi.org/10.3390/f15081449
Merkenschlager, C., Bangelesa, F., Paeth, H., & Hertig, E. (2023). Blessing and curse of bioclimatic variables: A comparison of different calculation schemes and datasets for species distribution modeling within the extended Mediterranean area. Ecology and Evolution, 13(10), e10553. https://doi.org/10.1002/ece3.10553
Merow, C., Smith, M. J., & Silander Jr, J. A. (2013). A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography, 36(10), 1058-1069. https://doi.org/10.1111/j.1600-0587. 2013.07872.x
Mobaraki, A., Abtin, E., Kami, H. G., & Kiabi, B. H. (2013). Reproductive biology of the Mugger Crocodile, Crocodylus palustris, in Iran (Reptilia: Crocodylidae). Zoology in the Middle East, 59(3), 207-213. https://doi.org/ 10.1080/09397140.2013.841423
Mobaraki, A., Erfani, M., Abtin, E., & Ataie, F. (2018). Assessing habitat suitability of the mugger crocodile using maximum entropy. Environmental Sciences, 16(4), 47-62. https://envs.sbu.ac.ir/article_97996.html (In Persian).
Parveen, S., Kaur, S., Baishya, R., & Goel, S. (2022). Predicting the potential suitable habitats of genus Nymphaea in India using MaxEnt modeling. Environmental Monitoring and Assessment, 194(12), 853. https://doi.org/10.1007/ s10661-022-10524-8
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open‐source release of Maxent. Ecography, 40(7), 887-893. https://doi.org/10.1111/ecog.03049
Phillips, S.J., Dudík, M., &Schapire, R.E. (2024). Maxent software for modeling species niches and distributions (Version 3.4.1). Available from https://biodiversityinformatics.amnh.org/open_source/maxent/ Accessed on 2024-3-24.
Poor, E. E., Scheick, B. K., & Mullinax, J. M. (2020). Multiscale consensus habitat modeling for landscape level conservation prioritization. Scientific Reports, 10(1), 17783. https://doi.org/10.1038/s41598-020-74716-3
Rezaei, S., Mohammadi, A., Malakoutikhah, S., Khosravi, R. (2022) Combining multiscale niche modeling, landscape connectivity, and gap analysis to prioritize habitats for conservation of striped hyaena (Hyaena hyaena). PLoS ONE 17(2): e0260807. https://doi.org/10.1371/journal.pone.0260807
Rödder, D., Engler, J. O., Bonke, R., Weinsheimer, F., & Pertel, W. (2010). Fading of the last giants: an assessment of habitat availability of the Sunda gharial Tomistoma schlegelii and coverage with protected areas. Aquatic Conservation: Marine and Freshwater Ecosystems, 20(6), 678-684. https://doi.org/10.1002/aqc.1137
Rödder, D. (2009). How to predict the future? On niches and potential distributions of amphibians and reptiles in a changing ‎climate, Doctoral dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn. https://hdl.handle.net/ 20.500.11811/4157‎
Schilling-Tóth, B. M., Belcher, S. M., Knotz, J., Ondrašovičová, S., Bartha, T., Tóth, I., Zsarnovszky, A., & Kiss, D. S. (2024). ‎Temperature-dependent sex determination in crocodilians and climate challenges. Animals: an Open Access ‎Journal from MDPI, 14(13), 2015.‎ https://doi.org/10.3390/ani14132015
Shafiezadeh M, Moradi H, Fakheran S, Pourmanafi S. Modeling Focal-Species Habitat Suitability for Biodiversity Conservation Planning in the Southeastern Iran. Iranian Journal of Applied Ecology 2018; 7 (3) :51-66.  http://doi.org/ 10.29252/ijae.7.3.51  (In Persian).
Sobral-Souza, T., Santos, J. P., Maldaner, M. E., Lima-Ribeiro, M. S., & Ribeiro, M. C. (2021). EcoLand: A multiscale niche modelling framework to improve predictions on biodiversity and conservation. Perspectives in Ecology and Conservation, 19(3), 362-368. https://doi.org/10.1016/j.pecon.2021.03.008
Sun, X., Long, Z., & Jia, J. (2021). A multi-scale Maxent approach to model habitat suitability for the giant pandas in the Qionglai mountain, China. Global Ecology and Conservation, 30, e01766. https://doi.org/10.1016/j.gecco.2021. e01766
Terrado, M., Sabater, S., Chaplin-Kramer, B., Mandle, L., Ziv, G., & Acuña, V. (2016). Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Science of the total environment, 540, 63-70. https://doi.org/10.1016/j.scitotenv.2015.03.064