Using the Method of “Effective Mesh Size” for Qualitative Evaluation of Regional Protected Areas (Case study: Qazvin province)

Document Type : Research Paper

Authors

Department of Environmental Planning and Design, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran

Abstract

Abstract
Introduction
Landscape fragmentation is one of the consequences of the increasing socio-economic pressures that many parts of the world are facing today. This situation is more likely to occur in areas where socio-economic development leads to increase communication networks. Qazvin province has become more sensitive due to its proximity to the city of Tehran and the role of the province as a socio-economic passage through the northwestern connection of the country to the center passes, as well as its role as a bio-corridor on a national scale. Also, the existence of 5 areas under the management of Department of Environment in Qazvin province has made Qazvin as interesting landscape for researchers. Various approaches and methods have been developed to quantify fragmentation in landscape ecology studies as Landscape division, splitting index, and effective mesh size. These methods are based on the ability of two randomly chosen animals, which placed in the different areas in the landscape, to find each other. in other word, the chance that two randomly chosen places in a landscape will be found in the same patch type. Effective Mesh Size (EMS) is one of the most widely used landscape metrics in the worldwide and was first developed by Geager (2000). The aim of the present research was to investigate the new Cross-Boundary Connectivity (CBC) methodology using GIS software to measure the Effective Mesh Size (EMS) that presented by Moser et al. (2007). this method eliminates marginal effects, which has been evaluated in Qazvin province with emphasizing on protected areas that is being implemented for the first time in Iran. On the other hand, in order to make an optimal comparison, the results of the CBC map and the traditional methods were compared. Also, we evaluated protected areas by overlaying them with the results of EMS. Finally, the typological analysis of the province has been performed. This measurement can give more accurate results than similar indices due to the elimination of the marginal effects in the calculation.
Material & Method
In this study, in order to calculate the Effective Mesh Size (EMS) index, Qazvin province was divided into 1354 study sample units. The size of each unit is 1100 hectares. In addition to the sample units, Implementing the EMS calculation model requires selecting the type of landscape elements that have been disconnected. To distinguish landscape elements, Land Use and Land Cover (LULC) map have been prepared. LULC types, which provide the resource for biodiversity needs, such as agriculture, rangelands, and etc., have been identified as potential habitats. LULC types, which have led to destruction of habitats or limit wildlife moves, have been identified as material and energy flow barriers. To apply the model, the Cross-Boundary Connections (CBC) method has been used, which presented in Moser et al. (2007), to consider the area of all patches located wholly or partially in the reporting unit (hexagon), as well as, the area of some patches spread beyond the reporting unit borders. The result of multiplying patches within the reporting unit and the total area of the same patches have been divided by reporting unit area to calculate EMS.
Finally, by overlaying the results of the EMS with the Qazvin protected areas, the qualitative status of the protected areas has been evaluated.
Results and Discussion
The size of habitat patches within the sample of study, as well as the size of the same patches, regardless of the boundary of the sample of study, are the two main indicators used to calculate the Effective Mesh Size (EMS) index. Therefore, size of the habitat patch inside the sample of study shows the amount of human impact and change in the landscape structure. The result shows that 26 sample areas are in the very high level and have suffered the most damage and structural change by humans. in other words, those areas that have been severely fragmented by communication network, urban and industrial development. 15 samples are in the high level and 99 samples have been changed on average (medium level). Low and very low levels have occurred in 179 and 620 units, respectively.
According to the results of the LULC map, 96% of the case study is covered by potential habitats, some of which are natural, such as forests, pastures, semi-deserts and riverbeds, and some man-made ones such as irrigated agriculture, dry farming and groves. The northern and the southern strip include most natural and the central plain includes most man-made habitats. The results of the EMS showed that 310 and 425 samples are in the very low and low range of EMS respectively. The reason of these values is man-made barriers as communication networks that are mostly located in the center of Qazvin plain. Many studies including Zebardast et al. (2011), Girvetz et al. (2007) and Pătru-Stupariu et al. (2015), mentioned that communication networks have high effect in fragmentation and the most important reason for the low EMS. 352 samples have a moderate value, most of which have been covered by traditional agriculture and areas under average human influence. 153 and 115 samples have high and very high values of EMS respectively. These samples have been covered by continuous rangeland and semi-desert that are far from centralized human developments.
Meanwhile, Alllah-Abad hunting prohibited region, with only 4% fragmentation, has the smallest fragmentation among the protected areas in the Qazvin province. Alamoot Protected Area with 22% of medium and high fragmentation, is in relatively good condition. Also, the Abgarm and Avaj hunting prohibited region has more than 50% of the units with high fragmentation. The Tarom and Bashgol protected areas with 92% and 96% of the fragmented units respectively, are in poor condition. The last three zones are fragmented more than others. Thus, to compare the protected areas in Qazvin province, Allah-Abad hunting prohibited region has the most favorable and Bashgol protected area has the most unfavorable situation in terms of EMS index.
Conclusion
The results of this study showed Qazvin province’s landscape has been fragmented in the center, where the communication network has developed. We highlighted the need to pay attention to ecological process and the matter and energy flows in the center of the study area. Protected areas should have a high EMS index due to their nature.
This study also considered the role of communication network on habitat fragmentation, which is emphasized the attention should be paid to the issue of habitat fragmentation before roads and railroads projects are implemented. Also, by ranking the protected areas based on the EMS index, it was founded that some protected areas are severely fragmented, and special attention needs to be paid to these areas in management programs.
The overall results of this study can be used for planning and protecting the biodiversity and identifying the new protected areas or also changing the protection levels, in addition, it can be used for land use planning and regional planning at the upper province level.

Keywords


جاپلقی، م؛ غلامعلی‌‌فرد، م؛ شایسته، ک، (1396). پایش و تحلیل الگوی سیمای‌سرزمین استان لرستان و فرآیند تغییر آن در محیط GIS، محیط‌زیست طبیعی، مجله منابع طبیعی ایران، 70(1)، صص 35-15.
حسینی وردئی، و؛ سلمان ماهینی، ع؛ منوری، س. م؛ خیرخواه زرکش، م، م، (1391). کاربرد سنجه های سیمای سرزمین در ارزیابی اثرات تجمعی شبکه جادهای بر پوشش درختی، محیط‌زیست طبیعی، مجله منابع طبیعی ایران، 65(2)، 139-152.
خسروی، ر؛ همامی، م. ر؛ ملکیان، م، (1396). ارزیابی پیوستگی سیمای‌سرزمین و کریدورهای مهاجرتی آهوی گواتردار در مناطق مرکزی ایران، بوم‌‌شناسی کاربردی، 6(4)، 49-64.
درویش‌‌صفت، ع. ا؛ باقری، م؛ قربانی، م؛ امیری، ق، ز، (1397). مدل‌سازی آشفتگی مکانی جنگل با استفاده از سنجه‌‌های سیمای‌سرزمین در منطقه حفاظت‌شده سرولات، مجله منابع طبیعی ایران، جنگل و فرآورده‌‌های چوب، 71(1)، 23-33.
درویش‌‌صفت، ع. ا؛ پیرباوقار، م؛ رجب‌‌پور، م، (1392). سنجش از دور برای مدیران GIS، انتشارات دانشگاه تهران، تهران.
درویشی، آ؛ فاخران، س؛ سفیانیان، ع. ر؛ قربانی، م، (1392). کمی‌‌سازی تغییرات الگوی مکانی سیمای‌سرزمین در زیستگاه سیاه خروس قفقازی (tetrao mlokosiewiczi) در ذخیرگاه زیستکره‌‌ ارسباران، اکولوژی کاربردی، 2(5)، 37-27.
درویشی، آ؛ فاخران، س؛ سفیانیان، ع. ر؛ قربانی، م، (1394). بارزسازی تغییرات و پویایی کاربری ها و پوشش اراضی در ذخیره گاه زیست کره ارسباران (1366 ـ 1390)، محیط‌زیست طبیعی (منابع طبیعی ایران)، 68(4)، 559-572.
زبردست، ل؛ یاوری، ا.ح؛ صالحی، ا؛ مخدوم، م، (1390). استفاده از متریک اندازه مؤثر شبکه در تحلیل از هم گسیختگی پوشش‌های جنگلی محدودة اثر جاده در پارک ملی گلستان، محیط شناسی، 37(58)، 15-20.
گشتاسب، ح؛ شمس اسفندآباد، ب؛ عطایی، ف؛ مظفری، ع، (1391). مدل‌سازی مطلوبیت زیستگاه گراز (Sus scrofa) در منطقه الموت شرقی استان قزوین، محیط‌زیست طبیعی، مجله منابع طبیعی ایران، 65(2) 247-258.
نصیری، و؛ درویش‌‌صفت، ع‌‌، ا، (1397). تحلیل کاربری و پوشش زمین‌‌ها با استفاده از سنجه‌‌های بوم شناسی منظر (بررسی موردی: منطقه ارسباران). علوم محیطی، 16(3)، 101-118.
نصیری، و؛ قربانی، م؛ درویش‌‌صفت، ع‌‌، ا، (1399). ارائه روشی برای کمی سازی تغییرات آشفتگی مکانی بر پایه سنجههای سیمای‌سرزمین (مطالعه موردی: منطقه حفاظت‌شده ارسباران در دوره زمانی 1369-1393)، محیط‌زیست طبیعی (منابع طبیعی ایران)، 73(2) 409-397.
وفایی، س؛ درویش‌‌صفت، ع، ا؛ پیرباوقار، م، (1392). پایش و پیش‌‌بینی روند تغییرات مکانی کاربری اراضی با استفاده از مدل LCM (مطالعه موردی: منطقه مریوان). مجله جنگل ایران، 5(3)، 336-322.
Darvishi, A., Fakheran, S., & Soffianian, A. (2015). Monitoring landscape changes in Caucasian black grouse (Tetrao mlokosiewiczi) habitat in Iran during the last two decades. Environmental monitoring and assessment, 187(7), 443. https://link.springer.com/article/10.1007/s10661-015-4659-3.
Darvishi, A., Yousefi, M., & Marull, J. (2020). Modelling landscape ecological assessments of land use and cover change scenarios. Application to the Bojnourd Metropolitan Area (NE Iran). Land Use Policy, 99, 105098. https://doi.org/10.1016/j.landusepol.2020.105098.
Forman, R.T., Sperling, D., Bissonette, J.A., Clevenger, A.P., Cutshall, C.D., Dale, V.H., Fahrig, L., France, R.L., Heanue, K., Goldman, C.R., & Jones, J. (2003). Road ecology: science and solutions. Island press, Washington DC.
Frank, S., Fürst, C., Koschke, L., & Makeschin, F. (2012). A contribution towards a transfer of the ecosystem service concept to landscape planning using landscape metrics. Ecological Indicators, 21, 30-38. https://doi.org/10.1016/j.ecolind.2011.04.027.
Gao, J., & Li, S. (2011). Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using Geographically Weighted Regression. Applied Geography, 31(1), 292-302. https://doi.org/10.1016/j.apgeog.2010.06.003.
Girvetz, E. H., Thorne, J. H., Berry, A. M., & Jaeger, J. A. (2007). Integrating habitat fragmentation analysis into transportation planning using the effective mesh size landscape metric. https://escholarship.org /uc/item/6cj9g88f.
Jaeger, J. A. (2000). Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape ecology, 15(2), 115-130. https://link.springer.com/article/ 10.1023/ A: 1008129329289.
Jaeger, J. A., Bertiller, R., Schwick, C., Müller, K., Steinmeier, C., Ewald, K. C., & Ghazoul, J. (2008). Implementing landscape fragmentation as an indicator in the Swiss Monitoring System of Sustainable Development (MONET). Journal of environmental management, 88(4), 737-751. https://doi.org/ 10.1016/ j.jenvman.2007.03.043.
Ledda, A., & De Montis, A. (2019). Infrastructural landscape fragmentation versus occlusion: A sensitivity analysis. Land Use Policy, 83, 523-531. https://doi.org/10.1016/j.landusepol.2019.02.035.
Li, H., & Wu, J. (2004). Use and misuse of landscape indices. Landscape ecology, 19(4), 389-399. https://link. springer.com/article/10.1023/B:LAND.0000030441.15628.d6.
Marull, J., Cunfer, G., Sylvester, K., & Tello, E. (2018a). A landscape ecology assessment of land-use change on the Great Plains-Denver (CO, USA) metropolitan edge. Regional environmental change, 18(6), 1765-1782. https://link.springer.com/article/10.1007/s10113-018-1284-z.
Marull, J., Delgadillo, O., Cattaneo, C., La Rota, M. J., & Krausmann, F. (2018b). Socioecological transition in the Cauca river valley, Colombia (1943–2010): towards an energy–landscape integrated analysis. Regional environmental change, 18(4), 1073-1087. https://link.springer.com/article/ 10.1007/ s10113-017-1128-2.
Moser, B., Jaeger, J. A., Tappeiner, U., Tasser, E., & Eiselt, B. (2007). Modification of the effective mesh size for measuring landscape fragmentation to solve the boundary problem. Landscape ecology, 22(3), 447-459. https://link.springer.com/article/10.1007/s10980-006-9023-0.
Nasiri, V., Darvishsefat, A. A., Rafiee, R., Shirvany, A., & Hemat, M. A. (2019). Land use change modeling through an integrated multi-layer perceptron neural network and Markov chain analysis (case study: Arasbaran region, Iran). Journal of Forestry Research, 30(3), 943-957. https://link. springer.com/ article/ 10.1007/s11676-018-0659-9.
Northrup, J. M., Anderson Jr, C. R., & Wittemyer, G. (2015). Quantifying spatial habitat loss from hydrocarbon development through assessing habitat selection patterns of mule deer. Global Change Biology, 21(11), 3961-3970. https://doi.org/10.1111/gcb.13037.
Otero, I., Marull, J., Tello, E., Diana, G. L., Pons, M., Coll, F., & Boada, M. (2015). Land abandonment, landscape, and biodiversity: questioning the restorative character of the forest transition in the Mediterranean. Ecology and Society, 20(2), 7. http://dx.doi. org/10.5751/ES-07378-200207.
Pătru-Stupariu, I., Stupariu, M. S., Tudor, C. A., Grădinaru, S. R., Gavrilidis, A., Kienast, F., & Hersperger, A. M. (2015). Landscape fragmentation in Romania's Southern Carpathians: Testing a European assessment with local data. Landscape and Urban Planning, 143, 1-8. https://doi.org/10.1016/ j.landurbplan. 2015.06.002.
Proppe, D. S., McMillan, N., Congdon, J. V., & Sturdy, C. B. (2017). Mitigating road impacts on animals through learning principles. Animal cognition, 20(1), 19-31. https://link.springer.com/article/ 10.1007/ s10071-016-0989-y.
Schmiedel, I., & Culmsee, H. (2016). The influence of landscape fragmentation, expressed by the ‘Effective Mesh Size Index’, on regional patterns of vascular plant species richness in Lower Saxony, Germany. Landscape and Urban Planning, 153, 209-220. https://doi.org/10.1016/ j.landurbplan. 2016.01.012.
Spanowicz, A. G., & Jaeger, J. A. (2019). Measuring landscape connectivity: On the importance of within-patch connectivity. Landscape Ecology, 34(10), 2261-2278. https://link.springer.com/article/10.1007/s10980-019-00881-0.
Tian, Y., Jim, C. Y., Tao, Y., & Shi, T. (2011). Landscape ecological assessment of green space fragmentation in Hong Kong. Urban Forestry & Urban Greening, 10(2), 79-86. https://doi.org/10.1016/ j.ufug. 2010. 11.002.
Turner, M. G., Gardner, R. H., O'neill, R. V., & O'Neill, R. V. (2001). Landscape ecology in theory and practice, 401, New York, Springer. https://link.springer.com/book/10.1007%2F978-1-4939-2794-4.
Urban, D. L., O'Neill, R. V., & Shugart Jr, H. H. (1987). A hierarchical perspective can help scientists understand spatial patterns. BioScience, 37(2), 119-127.
Yousefi, M., Darvishi, A., Padró, R., Barghjelveh, S., Dinan, N. M., & Marull, J. (2020). An energy-landscape integrated analysis to evaluate agroecological scarcity. Science of The Total Environment, 139998. https://doi.org/10.1016/j.scitotenv.2020.139998.
Yousefi, M., Darvishi, A., Tello, E., Barghjelveh, S., Dinan, N. M., & Marull, J. (2021). Comparison of two biophysical indicators under different landscape complexity, Ecological Indicators, 124, 107439. https://doi.org/10.1016/j.ecolind.2021.107439.
Zhang, L., Lu, W., Hou, G., Gao, H., Liu, H., & Zheng, Y. (2019). Coupled analysis on land use, landscape pattern and nonpoint source pollution loads in Shitoukoumen Reservoir watershed, China. Sustainable Cities and Society, 51, 101788. https://doi.org/10.1016/j.scs.2019.101788.