Investigating recent land use changes of Qazvin's traditional orchards by using MSI sensor

Document Type : Research Paper

Authors

Department of water science and engineering, Faculty of Agriculture, Imam Khomeini International University, Qazvin, Iran

Abstract

The traditional orchards surrounding the city of Qazvin, as a cultural and social heritage, play a vital role in the city's environmental and economic sustainability. Land use changes could affect the energy and water balance of urban and non-urban areas. Destroying traditional orchards could lead to environmental problems such as increased flood intensity and heat-trapping in urban areas. The orchards also act as artificial reservoirs for the Qazvin Plain aquifer, contributing to the sustainability of the groundwater level. Given the significance of the orchard’s ecosystem for Qazvin, it is essential to examine the trend of changes in land use and its area. This study estimated the orchards' area using supervised classification of random forest and MSI sensor images, comparing the trend of changes from 2016 to 2022. Also, a temporal series of accessible images have been processed for two scenarios. In the first scenario, the total orchards' area was estimated without considering tree density, but the second scenario investigated the active area of orchards concerning tree density. The average of the total area and active area of orchards were found to be 2613 and 2203 hectares, respectively. The results demonstrated that about 15.7% of the orchards, equivalent to 410 hectares, either lost trees or had very low tree density, indicating a need for more attention to maintain the environmental balance of the region

Keywords

Main Subjects


Asghari Saraskanrood, S., & Sharifi Tolaroud, H. (2023). Remote Sensing Used to Detect Changes in Land Use and Forest Cover (A  Case  Study  of  Astara  City).  Land  Management  Journal, 11(2),  195- 208. doi: 10.22092/lmj.
2023.362257.332. (inPersian).
Ayenew, T. (2003). Evapotranspiration estimation using thematic mapper spectral satellite data in the Ethiopian rift and adjacent highlands. Journal of hydrology, 279(1-4), 83-93.‏
Bakr, N.; Weindorf, D.C.; Bahnassy, M.H.; Marei, S.M. & El-Badawi, M.M., (2010). Monitoring land cover changes in a newly reclaimed area of Egypt using multi-temporal Landsat data. Applied Geography, 30: 592-605.
Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197-227.
‏Cohrs, C. W., Cook, R. L., Gray, J. M., & Albaugh, T. J. (2020). Sentinel-2 leaf area index estimation for pine plantations in the southeastern United States. Remote Sensing, 12(9), 1406.‏
Dubath, P., Rimoldini, L., Süveges, M., Blomme, J., López, M., Sarro, L. M. & Eyer, L. (2011). Random forest automated supervised classification of Hipparcos periodic variable stars. Monthly Notices of the Royal Astronomical Society, 414(3), 2602-2617.‏
Papadavid, G., Neocleous, D., Kountios, G., Markou, M., Michailidis, A., Ragkos, A., & Hadjimitsis, D. (2017). Using SEBAL to investigate how variations in climate impact on crop evapotranspiration. Journal of Imaging, 3(3), 30.‏
Hashemi, S. A., FATEMI, T. S., KAVOUSI, K. H., & MADANIPOUR, K. M. (2016). Change detection in the forest cover of Siyahmezgi watershed of Guilan using LandSat images.‏Journal of RS and GIS for Natural Resources, 7(3): 78-88. (in Persian)
Huete, A. R., Liu, H. Q., Batchily, K. V., & Van Leeuwen, W. J. D. A. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote sensing of environment, 59(3), 440-451.‏
Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment25(3), 295-309.‏
Khedmatzadeh, A., mousavi, M., Mohamadi Torkamani, H., & Mohammadi, M. S. (2021). An Analysis of Land Use Changes and Thermal Island Formation in Urmia City exclusion Using Remote Sensing. Regional Planning, 11(41), 119-134. doi: 10.30495/jzpm.2021.3965. (inPersian)
Maghsoudi, M., Ganjaeian, H., & Hoseini, S. (2018). Evaluating the Effectiveness of Supervised and Unsupervised Classification Methods in Monitoring Regs (Case Study: Jazmourian Reg). Journal of Arid Regions Geographic Studies9(32), 81-92. (inPersian)
Mendoza, M. E., Granados, E. L., Geneletti, D., Pérez-Salicrup, D. R., & Salinas, V. (2011). Analysing land cover and land use change processes at watershed level: a multitemporal study in the Lake Cuitzeo Watershed, Mexico (1975–2003). Applied Geography, 31(1), 237-250.‏
Nath, B., & Acharjee, S. (2013). Forest cover change detection using normalized difference vegetation index (NDVI): a study of Reingkhyongkine lake’s adjoining areas, Rangamati, Bangladesh. Indian Cartogr, 33(2), 348-403.‏
Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 data for land cover/use mapping: A review. Remote Sensing, 12(14), 2291.‏ https://doi.org/10.3390/rs12142291
Rosenzweig, C., Solecki, W., & Slosberg, R. (2006). Mitigating New York City’s heat island with urban forestry, living roofs, and light surfaces. A report to the New York State Energy Research and Development Authority, 1-5.‏
Shahbazi, M., Kermanshahani, S., Ahmadi, H., Jamshidi, M., Kakvand, P., & Rezaei, H. (2020). Indigenous knowledge of flood management and floodwater spreading in Qazvin traditional garden; deserves a new look at conservation and restoration. Iranian Journal of Rainwater Catchment Systems, 8(1), 1-12.‏ (inPersian)
Soltani, M. (2024). Estimating maize canopy cover percent by means of image processing algorithms. Water and Irrigation Management, 14(1), 111-122. doi: 10.22059/jwim.2023.364331.1098. (inPersian)
Sun, Z., Wei, B., Su, W., Shen, W., Wang, C., You, D., & Liu, Z. (2011). Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Mathematical and Computer Modelling, 54(3-4), 1086-1092.‏
Tempfli, K., Huurneman, G. C., Bakker, W. H., Janssen, L. L. F., Feringa, W. F., Gieske, A. S. M., Grabmaier, K. A., Hecker, C. A., Horn, J. A., Kerle, N., van der Meer, F. D., Parodi, G. N., Pohl, C., Reeves, C. V., van Ruitenbeek, F. J. A., Schetselaar, E. M., Weir, M. J. C., Westinga, E., & Woldai, T. (2009). Principles of remote sensing: an introductory textbook. (ITC Educational Textbook Series; Vol. 2). International Institute for Geo-Information Science and Earth Observation.
Timmermans, W. J., Kustas, W. P., Anderson, M. C., & French, A. N. (2007). An intercomparison of the surface energy balance algorithm for land (SEBAL) and the two-source energy balance (TSEB) modeling schemes. Remote Sensing of Environment, 108(4), 369-384.‏
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150.‏
Uossef Gomrokchi, A., Akbari, M., & Yunesi, M. (2019). Estimation of biological water rights of traditional orchards in Qazvin using remote sensing capabilities. Journal of Environmental Studies, 45(2), 237-252.‏ doi: 10.22059/jes.2019.275208.1007816. (inPersian)