Estimation of Water Turbidity by Remote Sensing and Random Forest Algorithm, Case Study: Chitgar Persian Gulf Martyrs Lake, Tehran

Document Type : Research Paper


1 Shahid Beheshti University, Environmental Sciences Research Institute, Tehran, Iran

2 Shahid Beheshti University

3 Shahid Beheshti University, GIS & RS research center, Tehran, Iran


Water turbidity is one of the most important parameters of water quality, which represents the transparency of water and is effective in eutrophication. This research was done to estimate the amount of water turbidity using remote sensing data and the random forest technique. For this purpose, the water quality monitoring data of Chitgar Lake in Tehran were used, which is an artificial shallow lake with recreational and urban scenery usage. The Landsat 8 OLI/TIRS and Sentinel 2 MSI satellite images were extracted after matching the date of field observation data and satellite images from 2016 to 2021. Data were divided into calibration and validation datasets. After performing pre-processing processes on satellite images, important bands were recognized using the random forest method. Afterward, appropriate band composition and algorithms were selected and regression models were fitted and validated. The optimum model was able to estimate water turbidity with Adj.R2=0.6, RMSE=1.07 NTU, and NRMSE=12% for Landsat-8 as well as with Adj.R2=0.73, RMSE=1.23 NTU and NRMSE=9% for Sentinel-2 satellite and estimated with a power of 80% for Chitgar Lake. Consequently, the optimal predictive model in Sentinel-2 was chosen with the assistance of the random forest. Moreover, the predictive model was able to estimate the water turbidity in Chitgar Lake with acceptable accuracy.


Main Subjects

Aghighi, H., Alimohamma, A., Reza Sarad, M., & Ashourloo, D. (2008). Estimation of Water Turbidity in Gorgan Bay, South-East of Caspian Sea by Using IRS-LISS-III Images. Pakistan Journal of Biological Sciences, 11(5), 711–718.
Akbar, T. A., Hassan, Q. K., & Achari, G. (2010). A remote sensing-based framework for predicting water quality of different water sources. Remote Sensing and Spatial Information Sciences, 34(xxx).
Atif, S., Syed Jamil Hasan, K., Suhaib bin, F., Saima, S., Adnan, A., Hafiz Uzair Ahmed, K., Aimen Fatima, A., & Fahad, A. (2018). Mapping Turbidity Levels in the Lake’s Water Using Satellite Remote Sensing Technique. International Journal of Economic and Environment Geology, 9(3).
Baughman, C., Jones, B., Bartz, K., Young, D., & Zimmerman, C. (2015). Reconstructing Turbidity in a Glacially Influenced Lake Using the Landsat TM and ETM+ Surface Reflectance Climate Data Record Archive, Lake Clark, Alaska. Remote Sensing, 7(10), 13692–13710.
Bayat, J., Hashemi, S. H., Zolfagharian, M., Emam, A., & Nooshabadi, E. Z. (2019). Water quality management of an artificial lake, case study: The lake of the Martyrs of the Persian Gulf. In Sustainable and Safe Dams Around the World (pp. 1442–1449). CRC Press.
Blix, K., Pálffy, K., Tóth, V. R., & Eltoft, T. (2018). Remote sensing of water quality parameters over Lake Balaton by using Sentinel-3 OLCI. Water (Switzerland), 10(10).
Bohn, V. Y., Carmona, F., Rivas, R., Lagomarsino, L., Diovisalvi, N., & Zagarese, H. E. (2018). Development of an empirical model for chlorophyll-a and Secchi Disk Depth estimation for a Pampean shallow lake (Argentina). The Egyptian Journal of Remote Sensing and Space Science, 21(2), 183–191. j.ejrs.2017.04.005
Buma, W. G., & Lee, S.-I. (2020). Evaluation of Sentinel-2 and Landsat 8 Images for Estimating Chlorophyll-a Concentrations in Lake Chad, Africa. Remote Sensing, 12(15), 2437.
Chen, X., Chen, W., Bai, Y., & Wen, X. (2022). Changes in turbidity and human activities along Haihe River Basin during lockdown of COVID-19 using satellite data. Environmental Science and Pollution Research, 29(3), 3702–3717.
Chu, H.-J., He, Y.-C., Chusnah, W. N., Jaelani, L. M., & Chang, C.-H. (2021). Multi-Reservoir Water Quality Mapping from Remote Sensing Using Spatial Regression. Sustainability, 13(11), 6416. su13116416
Ellero M. (2018). Water Quality Assessment using Landsat 8 and Sentinel-2: A case study of the Umdloti Estuary, KwaZulu-Natal, South Africa. KwaZulu Natal.
El-Zeiny, A., & El-Kafrawy, S. (2017). Assessment of water pollution induced by human activities in Burullus Lake using Landsat 8 operational land imager and GIS. The Egyptian Journal of Remote Sensing and Space Science, 20, S49–S56.
ESRI. (2022). Forest-based Classification and Regression (Spatial Statistics). /2.8/tool-reference/spatial-statistics/forestbasedclassificationregression.htm
Garg, V., Aggarwal, S. P., & Chauhan, P. (2020). Changes in turbidity along Ganga River using Sentinel-2 satellite data during lockdown associated with COVID-19. Geomatics, Natural Hazards and Risk, 11(1), 1175–1195.
Gholizadeh, M. H., & Melesse, A. M. (2017). Study on Spatiotemporal Variability of Water Quality Parameters in Florida Bay Using Remote Sensing. Journal of Remote Sensing & GIS, 06(03). 1000207
Gholizadeh, M., Melesse, A., & Reddi, L. (2016). A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors, 16(8), 1298.
Ha, N. T. T., Thao, N. T. P., Koike, K., & Nhuan, M. T. (2017). Selecting the Best Band Ratio to Estimate Chlorophyll-a Concentration in a Tropical Freshwater Lake Using Sentinel 2A Images from a Case Study of Lake Ba Be (Northern Vietnam). ISPRS International Journal of Geo-Information, 6(9), 290. ijgi6090290
Hafeez, S., Sing Wong, M., Abbas, S., Y. T., Kwok, C., Nichol, J., Ho Lee, K., Tang, D., & Pun, L. (2019). Detection and Monitoring of Marine Pollution Using Remote Sensing Technologies. In Monitoring of Marine Pollution. IntechOpen.
Harrington, J. A., Schiebe, F. R., & Nix, J. F. (1992). Remote sensing of Lake Chicot, Arkansas: Monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS data. Remote Sensing of Environment, 39(1), 15–27.
He, Y., Jin, S., & Shang, W. (2021). Water Quality Variability and Related Factors along the Yangtze River Using Landsat-8. Remote Sensing, 13(12), 2241.
Hossain, A. K. M. A., Mathias, C., & Blanton, R. (2021). Remote Sensing of Turbidity in the Tennessee River Using Landsat 8 Satellite. Remote Sensing, 13(18), 3785.
Huang J, Guo H, Guo X, & Singh V.P. (2020). Retrieval of Non-Optically Active Parameters for Small Scale Urban Waterbodies by a Machine Learning-Based Strategy. Preprints. 202004.0111.v1
IBM. (2020, December 7). Random forest. IBM.
Kapalanga, T. S., Hoko, Z., Gumindoga, W., & Chikwiramakomo, L. (2021). Remote-sensing-based algorithms for water quality monitoring in Olushandja Dam, north-central Namibia. Water Supply, 21(5), 1878–1894. 10.2166/ ws.2020.290
Karch, J. (2020). Improving on adjusted R-squared. Collabra: Psychology, 6(1).
Katlane, R., Dupouy, C., Kilani, B. el, & Berges, J. C. (2020). Estimation of Chlorophyll and Turbidity Using Sentinel 2A and EO1 Data in Kneiss Archipelago Gulf of Gabes, Tunisia. International Journal of Geosciences, 11(10), 708–728.
Li, X., Ding, J., & Ilyas, N. (2021). Machine learning method for quick identification of water quality index (WQI) based on Sentinel-2 MSI data: Ebinur Lake case study. Water Science and Technology: Water Supply, 21(3).
Lim, J., & Choi, M. (2015). Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environmental Monitoring and Assessment, 187(6), 384. s10661-015-4616-1
Moore, G. K. (1980). Satellite remote sensing of water turbidity. Hydrological Sciences Bulletin, 25(4).
Nas, B., Ekercin, S., Karabörk, H., Berktay, A., & Mulla, D. J. (2010). An Application of Landsat-5TM Image Data for Water Quality Mapping in Lake Beysehir, Turkey. Water, Air, & Soil Pollution, 212(1–4), 183–197.
Pavelsky, T. M., & Smith, L. C. (2009). Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace-Athabasca Delta, Canada. Water Resources Research, 45(11). 2008WR007424
Quang, N., Sasaki, J., Higa, H., & Huan, N. (2017). Spatiotemporal Variation of Turbidity Based on Landsat 8 OLI in Cam Ranh Bay and Thuy Trieu Lagoon, Vietnam. Water, 9(8), 570.
Ritchie, J. C., Zimba, P. V., & Everitt, J. H. (2003). Remote Sensing Techniques to Assess Water Quality. Photogrammetric Engineering & Remote Sensing, 69(6), 695–704.
Rubin, H. J., Lutz, D. A., Steele, B. G., Cottingham, K. L., Weathers, K. C., Ducey, M. J., Palace, M., Johnson, K. M., & Chipman, J. W. (2021). Remote Sensing of Lake Water Clarity: Performance and Transferability of Both Historical Algorithms and Machine Learning. Remote Sensing, 13(8), 1434.
Sebastiá-Frasquet, M.-T., Aguilar-Maldonado, J. A., Santamaría-Del-Ángel, E., & Estornell, J. (2019). Sentinel 2 Analysis of Turbidity Patterns in a Coastal Lagoon. Remote Sensing, 11(24), 2926. rs11242926
Topp, S. N., Pavelsky, T. M., Jensen, D., Simard, M., & Ross, M. R. V. (2020). Research trends in the use of remote sensing for inland water quality science: Moving towards multidisciplinary applications. In Water (Switzerland) (Vol. 12, Issue 1).
Verzani, J. (2004). Using R for Introductory Statistics. In Using R for Introductory Statistics. New York: Chapman and Hall/CRC.
Wang, L., Xu, M., Liu, Y., Liu, H., Beck, R., Reif, M., Emery, E., Young, J., & Wu, Q. (2020). Mapping Freshwater Chlorophyll-a Concentrations at a Regional Scale Integrating Multi-Sensor Satellite Observations with Google Earth Engine. Remote Sensing, 12(20), 3278.
Wass, P. D., Marks, S. D., Finch, J. W., Leeks, G. J. L., & Ingram, J. K. (1997). Monitoring and preliminary interpretation of in-river turbidity and remotely sensed imagery for suspended sediment transport studies in the Humber catchment. Science of The Total Environment, 194–195, 263–283. 05370-3
Zhang, S., & Gao, H. (2020). Using the digital elevation model (DEM) to improve the spatial coverage of the MODIS-based reservoir monitoring network in South Asia. Remote Sensing, 12(5).