Quantitative Modeling of Spatiotemporal Changes in Soil Erosion and Retention Potential and Sediment Production (Case Study: Lahijan-Chabaksar and Astana-Kochsefhan Watersheds)

Document Type : Research Paper

Authors

Department of Environmental Planning, Management and Education, Factuality of Environment, University of Tehran, Tehran, Iran.

Abstract

The temporal and spatial distribution pattern of providing ecosystem services is one of the basic characteristics of ecosystems. One of the important ecosystem services in many ecosystems, including watersheds in northern Iran, is soil maintenance. This valuable service has not been investigated in many areas, including the watersheds of developing countries. The present study was conducted with the aim of investigating the spatial-temporal changes of soil erosion and maintenance in the years 2000 and 2020. Also, in this research, two watersheds of Lahijan-Chabaksar and Astana-Kuchsefhan, in Gilan province, have been selected as the study area. From an ecological point of view, these watersheds are a symbol of the human and natural interwoven ecosystem, which has a high capacity in providing all kinds of ecosystem services and has undergone changes in recent years. The results show that the total amount of soil erosion potential in the studied area in the studied years is equal to 73755909 and 119218604 tons, respectively, and the amount of soil maintenance ecosystem service in these years in the entire watershed is 1222434092 and 1218191672, respectively. It is a body. Also, based on the results obtained, a small part of the region has the most soil and sediment losses. Therefore, the results emphasize the urgent need for targeted soil and water conservation measures to ensure the sustainability of the basin's resources.

Keywords


  1. Ahmadi Mirghaed, F., Souri, B., Mohammadzadeh, M., et al. (2018). Evaluation of the relationship between soil erosion and landscape metrics across Gorgan Watershed in northern Iran. Environmental monitoring and assessment,190(11), 1-14.
  2. Arowolo, A. O., Deng, X., Olatunji, O. A., & Obayelu, A. E. (2018). Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeri. Science of the total Environment, 636, 597-609.
  3. Arunyawat, S., & Shrestha, R. P. (2016). Assessing land use change and its impact on ecosystem services in Northern Thailand. Sustainability, 8(8), 768.
  4. Asadolahi, Z. (2015). Assessing the impact of land use/Land cover change scenarios on supply and interaction of selected ecosystem services (Case study: Gorganrud watershed) (PhD thesis). University of Gorgan.
  5. Asadolahi, Z., Salmanmahiny, A., Sakieh, Y., et al. (2018). Dynamic trade-off analysis of multiple ecosystem services under land use change scenarios: Towards putting ecosystem services into planning in Iran. Ecological complexity,36, 250-260.
  6. Bakker, M. M., Govers, G., & Rounsevell, M. D. (2004). The crop productivity–erosion relationship: an analysis based on experimental work. Catena, 57(1), 55-76.
  7. Balmford, A., Bruner, A., Cooper, P, et al. (2002). Economic reasons for conserving wild nature. Science,297(5583), 950-953.
  8. Bogdan, S.M., Patru-Stupariu, I., & Zaharia, L. (2016). The Assessment of Regulatory Ecosystem Services: The Case of the Sediment Retention Service in a Mountain Landscape in the Southern Romanian Carpathians. Procedia Environtal Science, 32, 12–27.
  9. Boonkaewwan, S. (2018). Impacts of land-use changes on watershed discharge and water quality in a large intensive agricultural area in Thailand AU—Chotpantarat, Srilert. Hydrol. Scince Journal, 63, 1386–1407.
  10. Borselli, L., Cassi, P., & Torri, D. (2008). Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena, 75, 268–277.
  11. Bouguerra, S., & Jebari, S. (2017). Identification and prioritization of sub-watersheds for land and water management using InVEST SDR model: Rmelriver basin, Tunisia. Arabian Journal of Geosciences, 10(15), 1-9.
  12. Brown, L. C., & Foster, G. R. (1987). Storm Erosivity Using Idealized Intensity Distributions. Trans. Soc. Agric. Eng, 30, 379–386.
  13. Clerici, N., Cote-Navarro, F., Escobedo, F. J., et al. (2020). Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Science of the Total Environment, 685, 1181-1192.
  14. Degife, A., Worku, H., & Gizaw, S. (2021). Environmental implications of soil erosion and sediment yield in Lake Hawassa watershed, south-central Ethiopia. Environmental Systems Research10(1), 1-24.
  15. Farhan, Y., & Nawaiseh, S. (2015). Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environ Earth Sci, 74(6), 4649–4669
  16. Feng, Q., Zhao, W., Hu, X., et al. (2020). Trading-off ecosystem services for better ecological restoration: A case study in the Loess Plateau of China. Journal of Cleaner Production,257, 1-17.
  17. Fuentes, M., Millard, K., & Laurin, E. (2020). Big geospatial data analysis for Canada’s Air Pollutant Emissions Inventory (APEI): using google earth engine to estimate particulate matter from exposed mine disturbance areas. GIScience & Remote Sensing,57(2), 245-257.
  18. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27.
  19. Guo, M., Ma, S., Wang, L. J., et al. (2021). Impacts of future climate change and different management scenarios on water-related ecosystem services: A case study in the Jianghuai ecological economic Zone, China. Ecological Indicators,127, 107732-107745.
  20. Hajigholizadeh, M., Melesse, A.M., & Fuentes, H.R. (2018). Erosion and Sediment Transport Modelling in ShallowWaters: A Review on Approaches, Models and Applications. J. Environ. Res. Public Health, 15, 518.
  21. He, C., Zhang, D., Huang, Q., & Zhao, Y. (2016). Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environmental Modelling & Software75, 44-58.
  22. Heydari, M., Zahmatkesh Maromi, H., & Karam, A. (2022). Soil erosion hazard Zonation using SLEMSA model in the Ziarat catchment. Researches in Earth Sciences12(4), 50-67.
  23. Jiang, C., Li, D., Wang, D., et al. (2016). Quantification and assessment of changes in ecosystem service in the Three-River Headwaters Region, China as a result of climate variability and land cover change. Ecological Indicators,66, 199-211.
  24. Kepner, W.G., Ramsey, M.M., Brown, E.S., Jarchow, M.E., Dickinson, K.J., & Mark, A.F. (2012). Hydrologic futures: Using scenario analysis to evaluate impacts of forecasted land use change on hydrologic services. ESA Journal, 3, 1–25.
  25. Kilpatrick, A. M., Salkeld, D. J., Titcomb, G., & Micah, B. H. (2017). Conservation of biodiversity as a strategy for improving human health and well-being. Philosophical Transactions of the Royal Society B Sciences,372, 1-9.
  26. Kretz, L., Koll, K., Seele-Dilbat, C., van der Plas, F., Weigelt, A., & Wirth, C. (2021). Plant structural diversity alters sediment retention on and underneath herbaceous vegetation in a flume experiment. PloS one16(3), e0248320.
  27. Kumar, L., & Mutanga, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10),
  28. Li, H.L., Peng,, Liu, Y.X., & Yi’na, H. (2017). Urbanization impact on landscape patterns in BeijingCity, China: a spatial heterogeneity perspective. Ecological Indicator, 82, 50–60.
  29. Linders, T. E., Bekele, K., Schaffner, U, et al. (2020). The impact of invasive species on social-ecological systems: relating supply and use of selected provisioning ecosystem services. Ecosystem services,41, 101055-101069.
  30. Liu, X., Hu, G., Chen, Y., Li, X., Xu, X., Li, S., Pei, F., & Wang, S. (2018). High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote sensing of environment, 209, 227-239.
  31. Lü, Y., Fu, B., Feng, X., Zeng, Y., Liu, Y., Chang, R., Sun, G., & Wu, B. (2012). A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China. PloS one, 7(2), 1-10.
  32. Mazigh, N., Taleb, A., El Bilali, A., & Ballah, A. (2022). The Effect of Erosion Control Practices on the Vulnerability of Soil Degradation in Oued EL Malleh Catchment using the USLE Model Integrated into GIS, Morocco. Trends in Sciences, 19(2), 2059-2059.
  33. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: synthesis. A report of the millennium ecosystem assessment. Island Press.
  34. Nezhadafzali, K., Shahrokhi, M. R., & Bayatani, F. (2019). Assessment soil erosion using RUSLE model and identification the most effective factor in Dekhan watershed basin of southern Kerman. Journal of Natural Environmental Hazards8(20), 21-38.
  35. Nosrati, K., & Jalali, S. (2017). Investigating suspended sediment yield in Ziarat Drainage Basin, Gorgan in different seasons using sediment fingerprinting technique. Iranian journal of Ecohydrology4(3), 887-895.
  36. Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Jae Lim, K., Ballabio, C., et al. (2017). Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific reports7(1), 1-12.
  37. Payet, E., Dumas, P., & Pennober, G. (2012). Modélisation  de  l’érosion  hydrique  des  sols  sur  un  bassin  versant du sud-ouest de Madagascar, le Fiherenana. VertigO, 11, 12591
  38. Prasuhn, V. (2022). Experience with the assessment of the USLE cover-management factor for arable land compared with long-term measured soil loss in the Swiss Plateau. Soil and Tillage Research215, 105199.
  39. Raudsepp-Hearne, C., Peterson, G. D., & Bennett E. M. (2010). Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proceedings of the National Academy of Sciences,107(11), 5242-5247.
  40. Rocha, G. C. D., & Sparovek, G. (2021). Scientific and technical knowledge of sugarcane cover-management USLE/RUSLE factor. Scientia Agricola78, 1-9.
  41. Sadat, M., Salehi, E., Amiri, M. J., & Ehsani, A.H. (2021). Optimization of landscape structure based on ecological network analysis and graph theory. Journal of Environmental Studies,46(4), 509-524.
  42. Sadat, M., Zoghi, M., & Malekmohammadi, B. (2020). Spatiotemporal modeling of urban land cover changes and carbon storage ecosystem services: case study in Qaem Shahr County, Iran. Environment, Development and Sustainability22(8), 8135-8158.
  43. Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., & et al. (2015). InVEST 3.0 User’s Guide; The Natural Capital Projec Standford, CA.
  44. Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Frontiers in Earth Science,5(17), 1-10.
  45. Singh, V., Shukla, S., & Singh, A. (2021). The principal factors responsible for biodiversity loss. Open Journal of Plant Science, 6(1), 11-14.
  46. Srichaichana, J., Trisurat, Y., & Ongsomwang, S. (2020). Land use and land cover scenarios for optimum water yield and sediment retention ecosystem services in Klong U-Tapao Watershed, Songkhla Thailand. Sustainability,11(10), 1-22.
  47. Toumi, S., Meddi, M., Mahé, G., & Brou, Y. T. (2013). Cartographie de  l’érosion  dans  le  bassin  versant  de  l’Oued Mina en Algérie par télédétection et SIG’. Hydrolical science journal, 58, 1542-58.
  48. Vigiak, O., Borselli, L., Newham, L.T.H., et al. (2012) Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology, 138, 74–88.
  49. Wang, H.W., Kondolf, M., Tullos, D., & Kuo, W.C. (2018). Sediment Management in Taiwan’s Reservoirs and Barriers to Implementation. Water, 10, 1034.
  50. Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning(No. 537). Department of Agriculture, Science and Education Administration.
  51. Xiong, J., Thenkabail, P. S., Gumma, M. K., Teluguntla, P., Poehnelt, J., Congalton, R. G., Yadav, K & Thau, D. (2017). Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. Photogrammetry and Remote Sensing, 126, 225-244.
  52. Zhou, M., Deng, J., Lin, Y., et al. (2020). Identifying the effects of land use change on sediment export: Integrating sediment source and sediment delivery in the Qiantang River Basin, China. Science of the total environment,686, 38-49. Xu, Z., Peng, J., Dong, J., Liu, Y., Liu, Q., Lyu, D., ... & Zhang, Z. (2022). Spatial correlation between the changes of ecosystem service supply and demand: An ecological zoning approach. Landscape and Urban Planning217, 104258.
  53. Zhu, G., Qiu, D., Zhang, Z., et al. (2021). Land-use changes lead to a decrease in carbon storage in arid region, China. Ecological Indicators,127, 1-10.