Application of Linear Planning in Measuring the Feasibility of Shadegan Wetland Indicative According to Ramsar Convention Criteria

Document Type : Research Paper


1 Department of Environmental Science, Faculty of Natural Resources, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Department of Forestry, Faculty of Natural Resources, Khatam Alanbia University of Technology, Behbahan, Iran

3 Department of Environment, Tehran, Iran & Urmia Basin Chair ,Iran Resource Management Company, Ministry of Energy, Tehran, Iran


Wetlands are known as valuable ecosystems that have programmable functional values ​​(economic, social, ecological) due to their diverse functions. Wetland conservation is a priority for most governments and communities. Wetland extinction is associated with the extinction of the functions and services of these ecosystems. Among the valuable services and functions of wetlands can be water storage and flood prevention, nutrient stabilization, plant and aquatic harvesting, biodiversity conservation and nature development, primary production, waste decomposition, food networks, element and gas rotation (phosphorus, nitrogen rotation). , Sulfur) pointed out. . Considering the importance of wetlands in the protection of biodiversity and emphasizing the approach and the role they play in meeting the needs of human societies, also for the wise use of these ecosystems, the Convention on the Conservation of Wetlands of February 2, 1971 ( 13 February 1349) was formed in the city of Ramsar. The purpose of the Ramsar Convention is to ensure the protection and reasonable use of wetlands through local, regional, national and international cooperation to achieve sustainable development around the world. Currently, 171 countries, covering 2,409 wetland sites, with a total area of ​​more than 254 million hectares, are participating in the protection of these bodies of water under the Ramsar Convention. Iran has registered 25 sites in total with an area of ​​about 1.5 million hectares in the list of Ramsar Convention. However, the areas registered in the Ramsar Convention from the collection of wetlands and lakes of the country, do not include only the water body and include service areas around the natural wetland and even a collection of natural and man-made wetlands (such as the site of Fereydoun) A title is listed in Ramsar. Therefore, Iran's registration sites in the Ramsar list include 41 different lakes and wetlands. The Ramsar Convention for the Selection of Wetlands Eligible for Entry into International Aquatic Formations has established standards since 1980, which it revised in 1996. The recent criteria consist of 9 criteria in two separate groups. According to the first group of criteria of the convention, the wetland must be "rare or unique sample specimens". Following the introduction of eligibility criteria for the Ramsar Convention, the same criteria will be used for the optimal management of wetland host countries. Accordingly, a list is published in the Ramsar Convention called the Montreux List, which refers to wetlands that have deviated from the Ramsar Convention criteria and are temporarily removed from the Ramsar Wetlands List. The Montreux Index is a list of international wetlands where changes in the environmental characteristics of wetlands have occurred or are occurring, which may be the product of technological developments, pollution or other human interventions. Host countries have the opportunity to improve management and improve conditions. Improve and return the wetland to the Ramsar list. Currently, 47 wetlands from 26 countries are on the Montreux list, with the most Montreux sites belonging to Greece with 7 sites, followed by Iran with 6 sites. Currently, one of the challenges facing the country in the field of wetland management is the existence of 6 Ramsar sites in the Montreux list, and many efforts are being made by the Wetlands Office in the Environmental Protection Agency to remove these wetlands from the Montreux list. However, achieving a coherent and programmable methodology can accelerate this process and be based on scientific principles. Shadegan International Site is one of the wetlands registered in the Ramsar Convention, which together with Khoralamieh and Khor Musa with an area of ​​400,000 hectares in 1975 (04/02/1354 solar) four years after the conclusion of the Ramsar Convention with reference number 2100 Ramsar was registered. After developing the criteria of Ramsar Convention, this wetland was identified as complying with criteria 1 to 6 of the Convention. Unfortunately, in the last two decades, the development of human activities in the field of industry and agriculture has disrupted the natural conditions of this wetland and has caused a decrease in the quality of environmental conditions and loss of the wetland's eligibility in some criteria of the convention. . One of the criteria of the Ramsar Convention for considering an international wetland as its index is its rarity and uniqueness. Shadegan wetland, which is in accordance with the first criterion of Ramsar Convention, has turned it into an index wetland with unique features. The purpose of this study is to use linear programming in optimizing Shadegan wetland in fulfilling the first criterion of Ramsar Convention, in order to evaluate the status of this criterion in Shadegan site in order to help it be removed from the Montreux list. In this research, the linear programming model with the objectives: 1- Determining the values ​​of target variables in the three zones of sweet, salty and lush of the wetland 2- Determining the optimal total value of the wetland of the wetland within the criteria of Ramsar Convention 1, will be examined. This research seems to be the first use of linear programming to analyze the status of Ramsar Convention criteria, and no other similar approach is observed both at home and abroad. The minimum acceptable area with respect to the highest area of ​​the wetland water body was defined as the objective function of this criterion. The variables and constraints of this objective function were identified based on the three zones mentioned and the coefficient of each variable was calculated according to the habitat dependence of birds. The results of the research using Lingo software show the minimum frame area


آذر، ع. (1397). تحقیق در عملیات مفاهیم و کاربرد برنامه ریزی خطی، سازمان مطالعه و تدوین کتب علوم انسانی دانشگاه‌ها. سمت. 710 صفحه.
جعفری‌آذر، س.، سبز قبایی، غ.، توکلی، م.، و دشتی،. س. (1396). به‌کارگیری روش‌های تصمیم‌گیری چندمعیاره در ارزیابی مخاطرات زیست‌محیطی تالاب بین‌المللی شادگان، خورالامیه و خورموسی. جغرافیا و مخاطرات محیطی، 6(4)، 97-119.
خان‌پور، ف.، جعفری نژاد، م.، و باقرزاده کریمی، م. (1391). بررسی روند احیاء و بازسازی تالاب‌های بین‌‌المللی آلاگل، آلماگل و آجی گل. فصلنامه محیط زیست، شماره 53-54، 21-29.
رافعی، ا و دانه‌کار، ا. (1400). سیمای طبیعی و ویژگی های محیط زیستی تالاب شادگان .مجله طبیعت ایران. (در نوبت چاپ)
رافعی، ا و امینی نسب، س م.(1399). اثر پارامترهای اقلیمی بر روی شاخص‌های تراکم و تنوع پرندگان زمستان گذر آبزی. اولین همایش تنوع زیستی. پژوهشکده محیط زیست و توسعه پایدار.
رمضانی‌قوام‌آبادی، م ح؛ و سنایی‌پور، س. (1392). بررسی حقوقی پایبندی ایران به تعهد استفاده‌ی معقول از دریاچه‌ی ارومیه با تاکید بر کنوانسیون رامسر. مجله‌ی مطالعات حقوقی دانشگاه شیراز: 5، 109-140.
سلحشوری، پ، وفایی‌نژاد، ع، حسین‌زاده‌ساداتی، م. و جامعی، ن. (1397). بررسی روند تغییرات اکوسیستم تالاب شادگان با استفاده از سنجش از دور و GIS. کنفرانس ملی فن‌آوری‌ها و کاربردهای نوین ژئوماتیک. تبریز، دانشگاه تبریز. ایران.
صادقیان، ر. (1390). زبان مدل سازی لینگو: آموزش مقدماتی جلد اول. دانشگاه بوعلی سینا. 545ص.
فرخزاده، ب؛ مهدوی، م، سلاجقه، م، ملکیان، آ. (۱۳۹۶). مدیریت و برنامه ریزی منابع آب با استفاده از مدل برنامه ریزی خطی، مجله پژوهش آب ایران، ۱۱(۲۵): ۱۱.
فلاح شمسی، ر.، سبحانی، ه.، ارسطو، س.، درویش صفت، ع و فرجی دانا، ا. (1384). مدل برنامه ریزی خطی در تخصیص زمین به کاربری های مختلف ...، مجله منابع طبیعی ایران، 58 (3): 579-589.
گلاب‌کش، ش.، و قنبری‌ عدیوی، ز. (1386). بررسی آلاینده‌های صنعتی و کشاورزی در تالاب شادگان و ارائه راهکارهای مدیریتی و حفاظتی. نهمین سمینار سراسری آبیاری و کاهش تبخیر، کرمان، دانشگاه شهید باهنر.
میرزایی، ع و زیبایی، م. (1398). تخمین منافع اقتصادی برنامه های احیا و حفظ تالاب جازموریان. مجله تحقیقات اقتصاد کشاورزی. 11 (1)، 53-79.
واندر والک.، جی، آ. ترجمه‌ی نظری‌دوست، ع.، سلیمانی‌روزبهانی، م.، و اثناعشری، م. (1392). زیست‌شناسی تالاب‌های آب شیرین. نشر پردیس دانشگاه تهران، 141ص.
هنربخش، ا.، پژوهش، م.، زنگی آبادی، م.، و م، حیدری. (1395). بهینه سازی کاربری اراضی با استفاده از ترکیب روش های برنامه ریزی خطی فازی و تخصیص چند هدفۀ اراضی (مطالعۀ موردی: حوضۀ آبخیز چلگرد). اکو هیدرولوژی، 3(3):363-377.
هیلیر، ف.، و جرالد، ل. ترجمه محمد مدرس و اردوان آصف وزیری. (1382). برنامه ریزی خطی،. شماره 12. انتشارات نشر جوان. 420ص.
غنیان، م. (1397). طرح ﻣﺪﻳﺮﻳﺖ ﺟﺎﻣﻊ ﺗﺎﻻب ﺷﺎدﮔﺎن. ﺣﻔﺎﻇﺖ از ﺗﺎﻻﺑﻬﺎ، ﺑﺮای ﻣﺮدم، ﺑﺮای ﻃﺒﻴﻌﺖ.اداره کل محیط زیست. (55ص).
لطفی، ا. (1381). ﻃﺮح ﻣﺪﻳﺮﻳﺖ زﻳﺴﺖ ﻣﺤﻴﻄﻲ ﺗﺎﻻب ﺷﺎدﮔﺎن ﮔﺰارش1، ﻣﺤﻴﻂ ﻃﺒﻴﻌﻲ ﺑﻮم ﺳﺎزﮔﺎن. ﺗﺎﻻب ﺷﺎدﮔﺎن، وزارت ﺟﻬﺎد ﻛﺸﺎورزی ﻣﻌﺎوﻧﺖ آب و ﭘﺮوژه ﺧﺎک، ﺑﻬﺴﺎزی آﺑﻴﺎری، ﻣﻬﻨﺪﺳﺎن ﻣﺸﺎور ﭘﻨﺪام.
Bagherzadeh karimi, M. and Rouhany, M. (2007). Directory of Iranian Wetlands Designated under the Ramsar Convention, Rouzeno,Tehran. 120p.
Basumatary, U. R., & Mitra, D. K. (2020). A Study on Optimal Land Allocation through Fuzzy Multi-Objective Linear Programming for Agriculture Production Planning in Kokrajhar District, BTAD, Assam, India. International Journal of Applied Engineering Research, 15(1), 94-100.
Breslaw, J. A. (1976). A linear programming solution to the faculty assignment problem. Socio-Economic Planning Sciences, 10(6), 227-230.
Cai, B., Wang, X. and Li, Y. (2017). Application of a double-sided chance-constrained integer linear program for optimization of the incremental value of ecosystem services in Jilin Province, China. Water, 9, 1-14.
Cai, B., Zhang, Y., Wang, X. and Li, Y.(2018). An Optimization Model for a Wetland Restoration Project under Uncertainty. International journal of environmental research and public health, 15, 1-12.
Cohen, M. J., Creed, I. F., Alexander, L., Basu, N.B., Calhoun, A. J., Craft, C., D’Amico, E., Dekeyser, E., Fower, L. & Golden, H. E. (2016). Do geographically isolated wetlands influence landscape functions? Proceedings of the National Academy of Sciences, 113, 1978-1986.
Daghighi, A., Nahvi, A., and Kim, U. (2017). Optimal cultivation pattern to increase revenue and reduce water use: Application of linear programming to Arjan plain in Fars province. Agriculture, 7(9), 73.
Eiselt, H. A., & Sandblom, C. L. (2007). Linear programming and its applications. Springer Science & Business Media.
Feylizadeh, M. R., Mahmoudi, A., Bagherpour, M., & Li, D. F. (2018). Project crashing using a fuzzy multi-objective model considering time, cost, quality and risk under fast tracking technique: A case study. Journal of Intelligent & Fuzzy Systems, 35(3), 3615-3631. ‏
Lu, S., Li, J., Guan, X., Gao, X., Gu, Y., Zhang, D., ... & Li, D. (2018). The evaluation of forestry ecological security in China: Developing a decision support system. Ecological Indicators, 91, 664-678.
Maleki, S., Soffianian, A. R., Koupaei, S. S., Pourmanafi, S., & Saatchi, S. (2018). Wetland restoration prioritizing, a tool to reduce negative effects of drought; An application of multicriteria-spatial decision support system (MC-SDSS). Ecological engineering, 112, 132-139.
Mcfeeters, S.K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, International Journal of Remote Sensing, 17(7): 14251432.
Mohammadi, Z., Limaei, S. M., & Shahraji, T. R. (2017). Linear programming approach for optimal forest plantation. Journal of forestry research, 28(2), 299-307.
Mushet, D. M., Calhoun, A. J., Alexander, L. C., Cohen, M. J., Dekeyser, E.S., Fower, L., Lane, C. R., Lang, M. W., Rains, M. C. & Walls, S. C. (2015). Geographically isolated wetlands: rethinking a misnomer. Wetlands, 35, 423-431.
Nair, G. S., Bansude, S. N., & Peter, N. (2021). Cropping pattern optimization for Chamravattom regulator-cum-bridge using linear programming problems. IJCS, 9(1), 343-346.
Rains, M., Leibowitz, S., Cohen, M., Creed, I., Golden, H., Jawitz, J., Kalla, P., Lane, C., Lang, M. & Mclaughlin, D. (2016). Geographically isolated wetlands are part of the hydrological landscape. Hydrological Processes, 30, 153-160
Ramsar, C. (2009). what are criteria main ramsar [Online]. Available:
Ramsar, C. (2016). list-of-wetlands-of-international-importance-included-in-the-montreux-record.
Ramsar/a, C. (2019). wetland list [Online]. Available:
Ramsar/b, C. (2019). mountreux list.
Ramsar, C. (2019).
Russi, D., Tenbrink, P., Farmer, A., Badura, T., Coates, D., Forster, J., Kumar, R. & Davidson, N. (2013). The economics of ecosystems and biodiversity for water and wetlands. IEEP, London and Brussels, 78.118p.
Stralberg, D., Applegate, D. L., Phillips, S. J., Herzog, M. P., Nur, N., & Warnock, N. (2009). Optimizing wetland restoration and management for avian communities using a mixed integer programming approach. Biological conservation, 142(1), 94-109.‏
Tan, R. R., Aviso, K. B., Promentilla, M. A. B., Yu, K. D. S., & Santos, J. R. (2018). Input-Output Models for Sustainable Industrial Systems: Implementation Using LINGO. Springer.‏
Winston, W. L. (2002). Introduction to Mathematical Programming: Applications and Algorithms, Duxbury.
Zandebasiri, M., Vacik, H., Etongo, D., Dorfstetter, Y., Soosani, J., Pourhashemi, M., (2019). Application of time-cost trade-off model in forest management projects: The case of Oak decline project. Journal of forest science, 65 (12): 481-492.