استفاده از ضایعات سیمان مگنو و رسپین برای به دام اندازی دی اکسید کربن و تولید کربنات کلسیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده مهندسی شیمی، نف و گاز دانشگاه سمنان

2 دانشجوی کارشناسی ارشد دانشکده نفت و مهندسی شیمی دانشگاه آزاد اسلامی واحد علوم و تحقیقات

3 دانشگاه تهران

4 استادیار گروه مهندسی شیمی دانشگاه صنعتی جندی شاپور دزفول، دزفول، ایران

چکیده

در این پژوهش دو نوع پسماند صنایع سیمان به نام‌های مگنو و رسپین به عنوان منبع کلسیم برای به دام انداختن دی اکسید کربن بررسی شد. دی اکسید کربن طی مراحل آزمایش از روش تغییر pH به صورت کلسیم کربنات به دام انداخته شد. مورفولوژی، شناسایی فاز و ترکیبات شیمیایی رسوب کلسیم کربنات تولید شده توسط آنالیزهای مختلف مورد بررسی قرار گرفت. همچنین آنالیز احیای حرارتی رسوب به منظور اثبات پایداری و بررسی رفتار فیزیکی – شیمیایی ترکیب سنتز شده در اثر افزایش دما انجام شد. نتایج به دست آمده نشان داد که می‌توان از پسماند سیمان به عنوان منبع کلسیم برای به دام انداختن دی اکسید کربن به صورت کلسیم کربنات استفاده کرد. همچنین اثبات شد که دی اکسید کربن در کلسیم کربنات تولید شده در دماهای معمولی (کمتر از ℃340) پایدار است. در نهایت مشخص شد که می‌توان محصول با خلوص بالا (195/92 درصد کلسیم کربنات) از خوراک مگنو تولید کرد. همچنین خوراک رسپین دارای بیشترین ظرفیت برای به دام انداختن دی اکسید کربن است. نتایج به دست آمده نشان می‌دهد که استفاده از پسماند سیمان مگنو و رسپین برای تولید کلسیم کربنات، پتانسیل ایجاد سیکل یکپارچه کلسیم در صنعت سیمان را به وجود می‌آورد.

کلیدواژه‌ها


قاید امینی, ح., و همکاران (1395). مطالعه و تحقیق در ساختار نانوذرات کلسیم کربنات تولیدی در محیط افرونی. ششمین همایش ملی و نخستین همایش بین المللی کاربردهای شیمی در فناوری های نوین, موسسه آموزش عالی جامی، اصفهان، ایران.
Briffa, M., de la Haye, K., & Munday, P. L. (2012). High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Marine pollution bulletin, 64(8), 1519-1528.
Chen, Q., Ding, W., Peng, T., & Sun, H. (2020). Synthesis and characterization of calcium carbonate whisker from yellow phosphorus slag. Open Chemistry, 18(1), 347-356.
Hemmati, A., Shayegan, J., Bu, J., Yeo, T. Y., & Sharratt, P. (2014). Process optimization for mineral carbonation in aqueous phase. International Journal of Mineral Processing, 130, 20-27.
Huntzinger, D. N., Gierke, J. S., Sutter, L. L., Kawatra, S. K., & Eisele, T. C. (2009). Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. Journal of Hazardous Materials, 168(1), 31-37.
Iizuka, A., Katsuyama, Y., Fujii, M., Yamasaki, A., & Yanagisawa, Y. (2004, June). Development of a new carbon dioxide sequestration scenario by the carbonation of waste cement. In ACS National Meeting Book of Abstracts (Vol. 227, No. 1). American Chemical Society.
Jeannot, L., Bell, M., Ashwell, R., Volodkin, D., & Vikulina, A. S. (2018). Internal structure of matrix-type multilayer capsules templated on porous vaterite CaCO3 crystals as probed by staining with a fluorescence dye. Micromachines, 9(11), 547.
Kim, M. J., & Jung, S. (2020). Calcium elution from cement kiln dust using chelating agents, and CO2 storage and CaCO3 production through carbonation. Environmental Science and Pollution Research, 27(16), 20490-20499.
Koytsoumpa, E. I., Bergins, C., & Kakaras, E. (2018). The CO2 economy: Review of CO2 capture and reuse technologies. The Journal of Supercritical Fluids, 132, 3-16.
Mun, M., Cho, H., Kwon, J., Kim, K., & Kim, R. (2017). Investigation of the CO2 sequestration by indirect aqueous carbonation of waste cement. American Journal of Climate Change, 6(01), 132.
Owais, M., Järvinen, M., Taskinen, P., & Said, A. (2019). Experimental study on the extraction of calcium, magnesium, vanadium and silicon from steelmaking slags for improved mineral carbonation of CO2Journal of CO2 Utilization, 31, 1-7.
Pedraza, J., Zimmermann, A., Tobon, J., Schomäcker, R., & Rojas, N. (2021). On the road to net zero-emission cement: Integrated assessment of mineral carbonation of cement kiln dust. Chemical Engineering Journal, 408, 127346.
Rao, A. B., & Rubin, E. S. (2002). A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environmental science & technology, 36(20), 4467-4475.
Rayer, A. V., Reid, E., Kataria, A., Luz, I., Thompson, S. J., Lail, M., ... & Soukri, M. (2020). Electrochemical carbon dioxide reduction to isopropanol using novel carbonized copper metal organic framework derived electrodes. Journal of CO2 Utilization, 39, 101159.
Rodhe, H. (1990). A comparison of the contribution of various gases to the greenhouse effect. Science, 248(4960), 1217-1219.
WBCSD and I. E. Agency. (2009) Cement technology roadmap 2009: Carbon emissions reductions up to 2050.
Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O. (2001). Carbon dioxide emissions from the global cement industry. Annual review of energy and the environment, 26(1), 303-329.
Xuan, D., Zhan, B., Poon, C. S., Zheng, H. W., & Kwok, K. K. W. (2015, October). Carbon dioxide sequestration of cement slurry waste and valorisation of FRCAs in eco-construction products by carbonation. 14th International Congress on the Chemistry of Cement (ICCC 2015), in Beijing, China (pp. 1-8). www.iccc2015beijing.org
Yadav, S., & Mehra, A. (2021). A review on ex situ mineral carbonation. Environmental Science and Pollution Research, 1-30.
Yoo, Y., Kang, D., Park, S., & Park, J. (2020). Carbon utilization based on post-treatment of desalinated reject brine and effect of structural properties of amines for CaCO3 polymorphs control. Desalination, 479, 114325.
Yuan, Y., Xu, X., Xia, J., Zhang, F., Wang, Z., & Liu, Q. (2019). A hybrid material composed of reduced graphene oxide and porous carbon prepared by carbonization of a zeolitic imidazolate framework (type ZIF-8) for voltammetric determination of chloramphenicol. Microchimica Acta, 186(3), 1-8.